dc.contributor.author | Dolan, J. Matthew | |
dc.contributor.author | Pfeiffer, Götz | |
dc.contributor.author | Röhrle, Gerhard | |
dc.date.accessioned | 2017-12-05T14:35:13Z | |
dc.date.available | 2017-12-05T14:35:13Z | |
dc.date.issued | 2012-07-20 | |
dc.identifier.citation | Douglass, J. Matthew, Pfeiffer, Götz, & Röhrle, Gerhard. (2012). An inductive approach to Coxeter arrangements and Solomon’s descent algebra. Journal of Algebraic Combinatorics, 35(2), 215-235. doi: 10.1007/s10801-011-0301-9 | en_IE |
dc.identifier.issn | 1572-9192 | |
dc.identifier.uri | http://hdl.handle.net/10379/7013 | |
dc.description.abstract | In our recent paper (Douglass et al. arXiv: 1101.2075 (2011)), we claimed that both the group algebra of a finite Coxeter group W as well as the Orlik-Solomon algebra of W can be decomposed into a sum of induced one-dimensional representations of centralizers, one for each conjugacy class of elements of W, and gave a uniform proof of this claim for symmetric groups. In this note, we outline an inductive approach to our conjecture. As an application of this method, we prove the inductive version of the conjecture for finite Coxeter groups of rank up to 2. | en_IE |
dc.description.sponsorship | The authors acknowledge the financial support of the DFG-priority programme
SPP1489 “Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory”. Part of
the research for this paper was carried out while the authors were staying at the Mathematical Research
Institute Oberwolfach supported by the “Research in Pairs” programme in 2010. The second author wishes
to acknowledge support from Science Foundation Ireland. | en_IE |
dc.format | application/pdf | en_IE |
dc.language.iso | en | en_IE |
dc.publisher | Springer Verlag | en_IE |
dc.relation.ispartof | Journal Of Algebraic Combinatorics | en |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Ireland | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/ie/ | |
dc.subject | Coxeter groups | en_IE |
dc.subject | Reflection arrangements | en_IE |
dc.subject | Descent algebra | en_IE |
dc.subject | Dihedral groups | en_IE |
dc.subject | PARABOLIC SUBGROUPS | en_IE |
dc.subject | Mathematics | en_IE |
dc.title | An inductive approach to Coxeter arrangements and Solomon's descent algebra | en_IE |
dc.type | Article | en_IE |
dc.date.updated | 2017-12-04T14:02:35Z | |
dc.identifier.doi | 10.1007/s10801-011-0301-9 | |
dc.local.publishedsource | http://dx.doi.org/10.1007/s10801-011-0301-9 | en_IE |
dc.description.peer-reviewed | peer-reviewed | |
dc.contributor.funder | |~| | |
dc.internal.rssid | 2196327 | |
dc.local.contact | Gotz Pfeiffer, Dept. Of Mathematics, Room C208, Áras De Brún, Nui Galway. 3591 Email: goetz.pfeiffer@nuigalway.ie | |
dc.local.copyrightchecked | Yes | |
dc.local.version | ACCEPTED | |
nui.item.downloads | 971 | |