Microcirculation imaging based on full-range high-speed spectral domain correlation mapping optical coherence tomography
Date
2014Author
Subhash, Hrebesh M.
Leahy, Martin
Metadata
Show full item recordUsage
This item's downloads: 890 (view details)
Cited 25 times in Scopus (view citations)
Recommended Citation
Subhash HM, Leahy MJ; Microcirculation imaging based on full-range high-speed spectral domain correlation mapping optical coherence tomography. J. Biomed. Opt. 0001;19(2):021103-021103.
Published Version
Abstract
Microcirculation imaging is a key parameter for studying the pathophysiological processes of various disease conditions, in both clinical and fundamental research. A full-range spectral-domain correlation mapping optical coherence tomography (cm-OCT) method to obtain a complex-conjugate-free, full-range depth-resolved microcirculation map is presented. The proposed system is based on a high-speed spectrometer at 91 kHz with a modified scanning protocol to achieve higher acquisition speed to render cm-OCT images with highspeed and wide scan range. The mirror image elimination is based on linear phase modulation of B-frames by introducing a slight off-set of the probe beam with respect to the lateral scanning fast mirror's pivot axis. An algorithm that exploits the Hilbert transform to obtain a complex-conjugate-free image in conjunction with the cm-OCT algorithm is used to obtain full-range imaging of microcirculation within tissue beds in vivo. The estimated sensitivity of the system was around 105 dB near the zero-delay line with similar to 20 dB roll-off from +/-0.5 to +/-3 mm imaging-depth position. The estimated axial and lateral resolutions are similar to 12 and similar to 30 mu m, respectively. A direct consequence of this complex conjugate artifact elimination is the enhanced flow imaging sensitivity for deep tissue imaging application by imaging through the most sensitive zero-delay line and doubling the imaging range. (C) The Authors.
Description
Journal article
Collections
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.
The following license files are associated with this item: