Show simple item record

dc.contributor.advisorShearer, Andrew
dc.contributor.authorSherry, Michael
dc.date.accessioned2017-11-06T09:29:23Z
dc.date.available2017-11-06T09:29:23Z
dc.date.issued2017-10-27
dc.identifier.urihttp://hdl.handle.net/10379/6948
dc.description.abstractThis thesis investigates the comparative performance of multicore CPU and general purpose GPU on a commodity desktop computer. To investigate this, an image deconvolution software package (IMPAIR) was updated from its original cluster-computing design to support both of these parallel architectures. The IMPAIR software was chosen for this investigation due to the high memory and computational demands of the image restoration algorithms it implements, coupled with these algorithms’ natural amenity to highly parallelised solutions. IMPAIR performs the image deconvolution operation by parallelising either the unregularised Richardson Lucy algorithm (RL) or a wavelet regularised variant of Richardson Lucy (WRL), which carries a significantly higher computational cost but is more robust to the presence of high levels of noise in the algorithm’s input image. In order to support this WRL algorithm, general use wavelet shrinking libraries were developed for both the GPU and CPU, where a ×2 –×3 speedup of the GPU wavelet shrinking to the CPU wavelet shrinking was achieved. In total, eight parallelisation strategies for the IMPAIR deconvolution algorithms have been implemented and their runtime performance on a commodity desktop hardware is presented. Of the strategies presented, the “Topdown” multicore CPU strategy and the “Streaming” GPU strategy achieve similar runtimes, but the reduced memory footprint of the GPU Streaming strategy permits scaling up to image data over ten times the maximum capacity of the multicore CPU Topdown strategy, for both the regularised and unregularised Richardson Lucy algorithms.en_IE
dc.subjectPhysicsen_IE
dc.subjectAstronomyen_IE
dc.subjectIMPAIRen_IE
dc.subjectRichardson-Lucy deconvolutionen_IE
dc.subjectHeterogeneous hardwareen_IE
dc.titleIMPAIR: Massively parallel regularised Richardson-Lucy deconvolution on heterogeneous hardwareen_IE
dc.typeThesisen_IE
dc.local.noteThe Multicore CPU and GPU parallelised performance of an image deconvolution algorithm.en_IE
dc.local.finalYesen_IE
nui.item.downloads317


Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

Thumbnail

This item appears in the following Collection(s)

Show simple item record