Show simple item record

dc.contributor.authorPellucci, Matteo
dc.contributor.authorSomers, Kieran P.
dc.contributor.authorYasunaga, Kenji
dc.contributor.authorBurke, Ultan
dc.contributor.authorAlessio, Frassoldati
dc.contributor.authorRanzi, Eliseo
dc.contributor.authorCurran, Henry J.
dc.contributor.authorFaravelli, Tiziano
dc.date.accessioned2016-11-02T11:41:18Z
dc.date.available2016-11-02T11:41:18Z
dc.date.issued2015-08-24
dc.identifier.citationPelucchi, M,Somers, KP,Yasunaga, K,Burke, U,Frassoldati, A,Ranzi, E,Curran, HJ,Faravelli, T (2015) 'An experimental and kinetic modeling study of the pyrolysis and oxidation of n-C-3-C-5 aldehydes in shock tubes'. Combustion And Flame, 162 :265-286.en_IE
dc.identifier.issn1556-2921
dc.identifier.urihttp://hdl.handle.net/10379/6122
dc.descriptionJournal articleen_IE
dc.description.abstractDue to the increasing interest in the use of biofuels for energy production, it is of great importance to better understand the combustion and thermal decomposition characteristics of species such as aldehydes. These are known to be key intermediate products of transport fossil and bio-fuels combustion and are also dangerous pollutants emitted from combustion in internal combustion engines and from gasification of biomasses. In this study, an experimental and kinetic modeling investigation of propanal, n-butanal and n-pentanal pyrolysis and oxidation in two shock tube facilities was carried out. Experiments were performed in a single pulse shock tube to determine the speciation profiles of the fuels and intermediate species under pyrolysis conditions for mixture of pure propanal/n-butanal/n-pentanal (3%)-Ar (97%), at averaged reflected pressure of 1.9 atm and at reflected shock temperatures of 972-1372 K. Additionally, ignition delay times for mixtures of pure propanal/n-butanal/n-pentanal (1%)-O-2/Ar were measured in the temperature range 1136-1847 K, at pressures of 1 and 3 atm, and at equivalence ratios of 0.5, 1.0 and 2.0.A comprehensive sub-mechanism for the high temperature kinetics of the three aldehydes was developed. This scheme was then coupled with NUIG (National University of Ireland, Galway) and POLIMI (Politecnico di Milano) C-0-C-4 kinetic schemes. The inclusion of the aldehydes sub-mechanism in two different kinetic environments, required modifications for the H-abstraction reactions, due to different rate rules in use in the two kinetic environments, and due to differences in the C-0-C-4 kinetic schemes. Both of the models were validated and showed good agreement with the new experimental data. The mechanisms are also satisfactorily compared with ignition delay times, speciation profiles and laminar burning velocities previously published in literature. Reaction pathways and sensitivity analyses were also performed to highlight the important reaction steps involved in the pyrolysis and oxidation processes. The major differences between the models and the experiments have to be attributed to the chemistry of the smaller species, more than to aldehyde specific reactions. This work further highlights the relevant role of the C-0-C-4 sub-mechanism, mainly in terms of a unification process that needs to start from the smaller species chemistry in order to obtain an unambiguous description of any fuel investigated. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.en_IE
dc.format2017-08-24en_IE
dc.language.isoenen_IE
dc.publisherElsevier ScienceDirecten_IE
dc.relation.ispartofCombustion And Flameen
dc.subjectAldehydesen_IE
dc.subjectShock tubeen_IE
dc.subjectKinetic modelingen_IE
dc.subjectIgnition delay timeen_IE
dc.subjectPyrolysisen_IE
dc.subjectJet-stirred reactoren_IE
dc.subjectTemperature-coefficient regimeen_IE
dc.subjectHeavy duty vehiclesen_IE
dc.subjectThermal decompositionen_IE
dc.subjectAcetaldehyde oxidationen_IE
dc.subjectPropanal oxidationen_IE
dc.subjectOrganic compoundsen_IE
dc.subjectOxygenated fuelsen_IE
dc.subjectCombustion bomben_IE
dc.subjectDiesel engineen_IE
dc.titleAn experimental and kinetic modeling study of the pyrolysis and oxidation of n-C-3-C-5 aldehydes in shock tubesen_IE
dc.typeArticleen_IE
dc.date.updated2016-10-20T09:04:41Z
dc.identifier.doi10.1016/j.combustflame.2014.07.027
dc.local.publishedsourcehttp://dx.doi.org/10.1016/j.combustflame.2014.07.027en_IE
dc.description.peer-reviewedpeer-reviewed
dc.contributor.funder|~|
dc.internal.rssid8514506
dc.local.contactHenry Curran, Dept Of Chemistry, Room 215, Arts/Science Building, Nui Galway. 3856 Email: henry.curran@nuigalway.ie
dc.local.copyrightcheckedNo
dc.local.versionSUBMITTED
nui.item.downloads87


Files in this item

Thumbnail
Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record