Show simple item record

dc.contributor.authorNakamura, Hisashi
dc.contributor.authorDarcy, Daniel
dc.contributor.authorMehl, Marco
dc.contributor.authorTobin, Colin J.
dc.contributor.authorMetcalfe, Wayne K.
dc.contributor.authorPitz, William J.
dc.contributor.authorWestbrook, Charles K.
dc.contributor.authorCurran, Henry J.
dc.date.accessioned2016-11-01T16:27:48Z
dc.date.available2016-11-01T16:27:48Z
dc.date.issued2013-08-28
dc.identifier.citationNakamura, H,Darcy, D,Mehl, M,Tobin, CJ,Metcalfe, WK,Pitz, WJ,Westbrook, CK,Curran, HJ (2014) 'An experimental and modeling study of shock tube and rapid compression machine ignition of n-butylbenzene/air mixtures'. Combustion And Flame, 161 :49-64.en_IE
dc.identifier.issn1556-2921
dc.identifier.urihttp://hdl.handle.net/10379/6113
dc.description.abstractIn our previous work (D. Darcy, C.J. Tobin, K. Yasunaga, J.M. Simmie, J. Wurmel, W.K. Metcalfe, T. Niass, S.S. Ahmed, C.K. Westbrook, H.J. Curran, Combust. Flame 159 (2012) 2219-2232), ignition delay times of n-butylbenzene in air were measured using a shock tube over a temperature range of 980-1360 K, at reflected shock pressures of 1, 10, and 30 atm, and at equivalence ratios of 0.3, 0.5, 1.0 and 2.0. In the present study, these measurements have been extended to 50 atm and to lower temperatures using a rapid compression machine in the temperature range 730-1020 K, at compressed gas pressures of 10, 30 and 50 atm, over the same equivalence ratio range. Trends in ignition delay times over the wide temperature range were identified. The chemical kinetic model for n-butylbenzene, which was validated for the original shock tube data, was extended by adding low-temperature kinetics. The updated chemical kinetic model captures the general trend in reactivity of n-butylbenzene over the wide range of temperature, pressure and equivalence ratio conditions studied. Reaction flux analyses were carried out and it was found that fuel H-atom abstraction reactions forming the 4-phenylbut-4-yl radical, and its subsequent addition to molecular oxygen, is the primary source of reactivity in the low-temperature regime. High sensitivity to ignition delay time of the isomerization reactions of alkylperoxy, (R) over dot O-2 reversible arrow QOOH, and peroxy-alkylhydroperoxide radicals, (O) over dot(2)QOOH carbonylhydroperoxide + (O) over dotH, was also observed at low-temperatures. Comparisons are also made with experimental data obtained for n-propylbenzene over the same range of conditions and common trends are highlighted. It was found that, in general, n-butylbenzene was faster to ignite over the lower temperature range of 650-1000 K. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.en_IE
dc.description.sponsorshipNUIG acknowledge the financial support of the Saudi Arabian Oil Company.en_IE
dc.formatapplication/pdfen_IE
dc.language.isoenen_IE
dc.publisherElsevieren_IE
dc.relation.ispartofCombustion And Flameen
dc.subjectIgnition delay timesen_IE
dc.subjectn-Butylbenzeneen_IE
dc.subjectOxidationen_IE
dc.subjectShock tubeen_IE
dc.subjectRapid compression machineen_IE
dc.subjectHigh pressureen_IE
dc.subjectPropylbenzene oxidationen_IE
dc.subjectElevated pressuresen_IE
dc.subjectAutignitionen_IE
dc.subjectTolueneen_IE
dc.subjectCombustionen_IE
dc.subjectEthylbenzeneen_IE
dc.subjectHydrocarbonen_IE
dc.subjectBenzeneen_IE
dc.subjectXyleneen_IE
dc.subjectChemistryen_IE
dc.titleAn experimental and modeling study of shock tube and rapid compression machine ignition of n-butylbenzene/air mixturesen_IE
dc.typeArticleen_IE
dc.date.updated2016-10-20T09:57:41Z
dc.identifier.doi10.1016/j.combustflame.2013.08.002
dc.local.publishedsourcehttp://dx.doi.org/10.1016/j.combustflame.2013.08.002en_IE
dc.description.peer-reviewedpeer-reviewed
dc.contributor.funder|~|
dc.internal.rssid5667472
dc.local.contactHenry Curran, Dept Of Chemistry, Room 215, Arts/Science Building, Nui Galway. 3856 Email: henry.curran@nuigalway.ie
dc.local.copyrightcheckedNo
dc.local.versionACCEPTED
nui.item.downloads92


Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

Thumbnail

This item appears in the following Collection(s)

Show simple item record