Show simple item record

dc.contributor.authorBurke, Ultan
dc.contributor.authorShahla, Roya
dc.contributor.authorDagaut, Phillippe
dc.contributor.authorDayma, Guillaume
dc.contributor.authorTogbé, Casimir
dc.contributor.authorSomers, Kieran P.
dc.contributor.authorCurran, Henry J.
dc.date.accessioned2019-02-11T14:16:07Z
dc.date.issued2018-07-23
dc.identifier.citationBurke, Ultan, Shahla, Roya, Dagaut, Phillippe, Dayma, Guillaume, Togbé, Casimir, Somers, Kieran P., & Curran, Henry J. (2019). Species measurements of the particulate matter reducing additive tri–propylene glycol monomethyl ether. Proceedings of the Combustion Institute, 37(1), 1257-1264. doi: 10.1016/j.proci.2018.06.225en_IE
dc.identifier.issn1540-7489
dc.identifier.urihttp://hdl.handle.net/10379/14938
dc.description.abstractReducing particulate matter formation and emissions by using fuel additives is a topic of interest for the petrochemical and automotive engineering industries. A compound which has been shown to be effective in this regard is tri-propylene glycol monomethyl ether (TPGME). This molecule consists of three ether linkages, an alcoholic group and alkyl branching including primary, secondary and tertiary C-H bonds. Its exotic structural features make it challenging to accurately model its oxidation. It is these same structural features that make this molecule both an exciting additive and a challenging fuel for kinetic modelers to understand. To provide insight into the oxidation of this molecule, species measurements have been performed in a jet- stirred reactor. Species concentrations are measured at three equivalence ratios; 0.5, 1.0 and 2.0, at a constant TPGME concentration of 1000 ppm, a pressure of 1 atm, a constant residence time of 70 ms and over the temperature range of 530-1250 K. The species measured include global reactant and product species, molecular oxygen, carbon monoxide, carbon dioxide, water and molecular hydrogen. In addition, a number of soot precursor species are measured namely, ethylene, propene, acetylene, allene, 1-butene, propyne and butadiene. A literature model is used to predict the experiments and erroneous low-temperature reactivity is predicted by the model. The low-temperature reaction kinetics and the base-mechanism of the model is updated using recent kinetic insights. Despite the large uncertainties in the assignment of the kinetic parameters for this large molecule these erroneous predictions are removed and the model is capable of rationalizing the formation of all species measured. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.en_IE
dc.description.sponsorshipNUIG would like to thank Science Foundation Ireland (SFI) for the funding for this work via their Principal Investigator Program through project number 15/IA/3177. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 291049−2G-CSafe.en_IE
dc.formatapplication/pdfen_IE
dc.language.isoenen_IE
dc.publisherElsevieren_IE
dc.relation.ispartofProceedings Of The Combustion Instituteen
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectSoot precursoren_IE
dc.subjectLarge moleculeen_IE
dc.subjectOxidation mechanismen_IE
dc.subjectJet-stirred reactoren_IE
dc.subjectOxygenated additiveen_IE
dc.subjectJET-STIRRED REACTORen_IE
dc.subjectOXYGENATED FUELen_IE
dc.subjectDIMETHYL ETHERen_IE
dc.subjectCOMBUSTIONen_IE
dc.subjectOXIDATIONen_IE
dc.subjectHYDROCARBONen_IE
dc.subjectMECHANISMen_IE
dc.subjectIGNITIONen_IE
dc.subjectKINETICSen_IE
dc.titleSpecies measurements of the particulate matter reducing additive tri–propylene glycol monomethyl etheren_IE
dc.typeArticleen_IE
dc.date.updated2019-02-07T14:18:49Z
dc.identifier.doi10.1016/j.proci.2018.06.225
dc.local.publishedsourcehttps://doi.org/10.1016/j.proci.2018.06.225en_IE
dc.description.peer-reviewedpeer-reviewed
dc.contributor.funderScience Foundation Irelanden_IE
dc.contributor.funderSeventh Framework Programmeen_IE
dc.description.embargo2020-07-23
dc.internal.rssid15822725
dc.local.contactHenry Curran, Dept Of Chemistry, Room 215, Arts/Science Building, Nui Galway. 3856 Email: henry.curran@nuigalway.ie
dc.local.copyrightcheckedYes
dc.local.versionACCEPTED
dcterms.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/15/IA/3177/IE/Combustion Chemistry for Sustainable Fuel Utilization/en_IE
dcterms.projectinfo:eu-repo/grantAgreement/EC/FP7::SP2::ERC/291049/EU/Combustion of Sustainable Alternative Fuels for Engines used in aeronautics and automotives/2G-CSAFEen_IE
nui.item.downloads126


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland