Show simple item record

dc.contributor.authorSköldberg, Emil
dc.date.accessioned2018-08-24T08:26:25Z
dc.date.available2018-08-24T08:26:25Z
dc.date.issued2005-08-25
dc.identifier.citationSköldberg, Emil (2005). Morse theory from an algebraic viewpoint. Transactions of the American Mathematical Society 358 (1), 115-129
dc.identifier.issn0002-9947,1088-6850
dc.identifier.urihttp://hdl.handle.net/10379/9885
dc.description.abstractForman's discrete Morse theory is studied from an algebraic viewpoint, and we show how this theory can be extended to chain complexes of modules over arbitrary rings. As applications we compute the homologies of a certain family of nilpotent Lie algebras, and show how the algebraic Morse theory can be used to derive the classical Anick resolution as well as a new two-sided Anick resolution.
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.ispartofTransactions of the American Mathematical Society
dc.subjectcomplexes
dc.subjectgraphs
dc.titleMorse theory from an algebraic viewpoint
dc.typeArticle
dc.identifier.doi10.1090/s0002-9947-05-04079-1
dc.local.publishedsourcehttp://www.ams.org/tran/2006-358-01/S0002-9947-05-04079-1/S0002-9947-05-04079-1.pdf
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record