Show simple item record

dc.contributor.authorHubert, S.
dc.date.accessioned2018-08-24T08:25:11Z
dc.date.available2018-08-24T08:25:11Z
dc.date.issued2004-09-01
dc.identifier.citationHubert, S. (2004). Linkage maps of microsatellite dna markers for the pacific oyster crassostrea gigas. Genetics 168 (1), 351-362
dc.identifier.issn0016-6731
dc.identifier.urihttp://hdl.handle.net/10379/9322
dc.description.abstractWe constructed male and female consensus linkage maps for the Pacific oyster Crassostrea g,gigas, using a total of 102 microsatellite DNA markers typed in 11-day-old larvae from three families. We identified 11 and 12 linkage groups in the male and Fern ale consensus maps, respectively. Alignment of these separate maps, however, suggests 10 linkage groups, which agrees with the haploid chromosome number. The male linkage map comprises 88 loci and spans 616.1 cM, while the female map comprises 86 loci and spans 770.5 cM. The male and the female maps share 74 loci; 2 markets remain unlinked. The estimated coverages for the consensus linkage maps are 79% for the male and 70-75% for the female, on the basis of two estimates of genome length. Ninety-five percent of the genome is expected to lie within 16 and 21 cM of markers on the male and female maps, respectively, while 95% of simulated minimum distances to the male and female maps are within 10.1 and 13.6 cM, respectively. Females have significantly more recombination than males, across 118 pairs of linked markers in common to the parents of the three families. Significant differences in recombination and orders of markers are also evident among same-sex parents of different families as well as sibling parents of opposite sex. These observations Suggest that polymorphism for chromosomal rearrangements may exist in natural populations, which could have profound implications for interpreting the evolutionary genetics of the oyster. These are the first linkage maps for a bivalve mollusc that use microsatellite DNA markets, which should enable them to be transferred to other families and to be useful for further genetic analyses such as QTL mapping.
dc.publisherGenetics Society of America
dc.relation.ispartofGenetics
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectcomprehensive genetic-map
dc.subjectzebrafish danio-rerio
dc.subjectnegative correlation
dc.subjectrecombination rates
dc.subjectmouse genome
dc.subjectthunberg
dc.subjectgrowth
dc.subjectheterozygosity
dc.subjectaneuploidy
dc.subjectsex
dc.titleLinkage maps of microsatellite dna markers for the pacific oyster crassostrea gigas
dc.typeArticle
dc.identifier.doi10.1534/genetics.104.027342
dc.local.publishedsourcehttp://www.genetics.org/content/genetics/168/1/351.full.pdf
nui.item.downloads0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland