Show simple item record

dc.contributor.authorMurnane, J. G.
dc.contributor.authorBrennan, R. B.
dc.contributor.authorFenton, O.
dc.contributor.authorHealy, Mark G.
dc.identifier.citationMurnane, J. G., Brennan, R. B., Healy, M. G., & Fenton, O. (2015). Use of Zeolite with Alum and Polyaluminum Chloride Amendments to Mitigate Runoff Losses of Phosphorus, Nitrogen, and Suspended Solids from Agricultural Wastes Applied to Grassed Soils. Journal of Environmental Quality, 44, 1674-1683. doi: 10.2134/jeq2014.07.0319en_IE
dc.description.abstractCarbon (C) losses from agricultural soils to surface waters can migrate through water treatment plants and result in the formation of disinfection by-products (DBP), which are potentially harmful to human health. This study aimed to (1) quantify total organic carbon (TOC) and total inorganic carbon (TIC) losses in runoff after application of either dairy slurry, pig slurry, or milk house wash water (MWW) to land, and (2) mitigate these losses through co-amendment of the slurries with zeolite (2.36 3.35 mm clinoptilolite) and either liquid polyaluminum chloride (PAC) (10% Al2O3) for dairy and pig slurries or liquid aluminum sulfate (alum) (8% Al2O3) for MWW. Four treatments under repeated 30 min simulated rainfall events (9.6 mm h-1) were examined in a laboratory study using grassed soil runoff boxes (0.225 m wide and 1 m long, 10% slope): (1) control soil (2) unamended slurries (3) PAC-amended dairy and pig slurries (13.3 and 11.7 kg t-1, respectively); alum-amended MWW (3.2 kg t-1), and (4) combined zeolite and PAC-amended dairy (160 and 13.3 kg t-1 zeolite and PAC, respectively) and pig slurries (158 and 11.7 kg t-1 zeolite and PAC, respectively); and combined zeolite and alum-amended MWW (72 and 3.2 kg t-1 zeolite and alum, respectively). The unamended and amended slurries were applied at net rates of 31, 34 and 50 t ha-1 for pig and dairy slurries, and MWW. Significant reductions of TOC in runoff compared to unamended slurries were measured for PAC-amended dairy and pig slurries (52% and 56%, respectively), but not for alum-amended MWW. Dual zeolite and alum-amended MWW significantly reduced TOC in runoff compared to alum amendment only. We conclude that use of PAC-amended dairy and pig slurries and dual zeolite and alum-amended MWW, while effective, may not be economically viable to reduce TOC losses from organic slurries given the relatively low amounts of TOC measured in runoff from unamended slurries compared to the amounts applied.en_IE
dc.publisherCrop Science Society of Americaen_IE
dc.relation.ispartofJournal Of Environmental Qualityen
dc.subjectTotal organic carbonen_IE
dc.subjectTotal inorganic carbonen_IE
dc.subjectSoil organic carbonen_IE
dc.subjectSurface runoffen_IE
dc.subjectSurface runoffen_IE
dc.subjectWater treatmenten_IE
dc.subjectDisinfection by-productsen_IE
dc.subjectAgricultural slurriesen_IE
dc.subjectCivil engineeringen_IE
dc.titleUse of zeolite with alum and polyaluminum chloride amendments to mitigate runoff losses of phosphorus, nitrogen, and suspended solids from agricultural wastes applied to grassed soilsen_IE
dc.local.contactMark Healy, Room Eng-1038, Civil Engineering, Col Of Engineering & Informatics, Nui Galway. 5364 Email:

Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:


This item appears in the following Collection(s)

Show simple item record