Show simple item record

dc.contributor.authorBarrett, Richard A.
dc.contributor.authorO'Donoghue, Padraic E.
dc.contributor.authorLeen, Sean B.
dc.date.accessioned2019-12-13T09:27:48Z
dc.date.available2019-12-13T09:27:48Z
dc.date.issued2017-03-23
dc.identifier.citationBarrett, Richard A., O'Donoghue, Padraic E., & Leen, Sean B. (2017). A physically-based constitutive model for high temperature microstructural degradation under cyclic deformation. International Journal of Fatigue, 100, 388-406. doi: https://doi.org/10.1016/j.ijfatigue.2017.03.018en_IE
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10379/15641
dc.description.abstractThis paper presents a dislocation-mechanics cyclic viscoplasticity model which incorporates the key physical micro-mechanisms of strengthening and softening for high temperature deformation of 9Cr steels. In particular, these include precipitate and grain boundary strengthening, low-angle boundary dislocation annihilation and martensitic lath width evolution, using dislocation density as a key variable. The new model is applied to P91 steel across a range of strain-rates and strain-ranges in the 400-600 C temperature range, for power plant header applications, to demonstrate the effect of key microstructural parameters on high temperature low cycle fatigue performance. (C) 2017 Elsevier Ltd. All rights reserved.en_IE
dc.description.sponsorshipThis publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant Numbers SFI/14/IA/2604 and SFI/10/IN.1/I3015. The authors would also like to acknowledge the contributions made by the collaborators of the METCAM and MECHANNICS projects, including Prof. Noel O’Dowd and Dr. Brian Golden of the University of Limerick, Ms. Eimear O’Hara of NUI Galway, Prof. Dongfeng Li of Shenzen Graduate School (formerly of NUI Galway), Dr. Christopher Hyde of the University of Nottingham and Dr. Tadhg Farragher (formerly of NUI Galway).en_IE
dc.formatapplication/pdfen_IE
dc.language.isoenen_IE
dc.publisherElsevieren_IE
dc.relation.ispartofInternational Journal Of Fatigueen
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectTHERMAL-MECHANICAL FATIGUEen_IE
dc.subjectDISLOCATION-BASED MODELen_IE
dc.subjectSTRAIN-RATE SENSITIVITYen_IE
dc.subjectANGLE GRAIN-BOUNDARIESen_IE
dc.subjectMODIFIED 9CR-1MO STEELen_IE
dc.subjectMARTENSITIC STEELen_IE
dc.subjectTHERMOMECHANICAL FATIGUEen_IE
dc.subjectP91 STEELen_IE
dc.subjectLIFE PREDICTIONen_IE
dc.subject9CR-ODS STEELen_IE
dc.titleA physically-based constitutive model for high temperature microstructural degradation under cyclic deformationen_IE
dc.typeArticleen_IE
dc.date.updated2019-12-12T16:05:08Z
dc.identifier.doi10.1016/j.ijfatigue.2017.03.018
dc.local.publishedsourcehttps://doi.org/10.1016/j.ijfatigue.2017.03.018en_IE
dc.description.peer-reviewedpeer-reviewed
dc.contributor.funderScience Foundation Irelanden_IE
dc.internal.rssid18806238
dc.local.contactSean Leen, Mechanical & Biomedical Eng, Eng-2051, New Engineering Building, Nui Galway. 5955 Email: sean.leen@nuigalway.ie
dc.local.copyrightcheckedYes
dc.local.versionACCEPTED
dcterms.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2604/IE/Multi-scale, Through-process Chracterisation for Innovative Manufacture of Next-generation Welded Connections (MECHANNICS)/en_IE
dcterms.projectinfo:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/10/IN.1/I3015/IE/Materials for Energy: Multiscale Thermomechanical Characterisation of Advanced high temperature Materials for Power generation (METCAMP)/en_IE
nui.item.downloads431


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland