Show simple item record

dc.contributor.authorOhta, Shinya
dc.contributor.authorMontaño-Gutierrez, Luis F.
dc.contributor.authorde Lima Alves, Flavia
dc.contributor.authorOgawa, Hiromi
dc.contributor.authorToramoto, Iyo
dc.contributor.authorSato, Nobuko
dc.contributor.authorMorrison, Ciaran G.
dc.contributor.authorTakeda, Shunichi
dc.contributor.authorHudson, Damien F.
dc.contributor.authorRappsilber, Juri
dc.contributor.authorEarnshaw, William C.
dc.date.accessioned2018-09-20T16:20:40Z
dc.date.available2018-09-20T16:20:40Z
dc.date.issued2016-05-26
dc.identifier.citationOhta, Shinya; Montaño-Gutierrez, Luis F. de Lima Alves, Flavia; Ogawa, Hiromi; Toramoto, Iyo; Sato, Nobuko; Morrison, Ciaran G.; Takeda, Shunichi; Hudson, Damien F.; Rappsilber, Juri; Earnshaw, William C. (2016). Proteomics analysis with a nano random forest approach reveals novel functional interactions regulated by smc complexes on mitotic chromosomes. Molecular & Cellular Proteomics 15 (8), 2802-2818
dc.identifier.issn1535-9476,1535-9484
dc.identifier.urihttp://hdl.handle.net/10379/13338
dc.description.abstractPackaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression.
dc.publisherAmerican Society for Biochemistry & Molecular Biology (ASBMB)
dc.relation.ispartofMolecular & Cellular Proteomics
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectspindle assembly checkpoint
dc.subjectDNA-replication
dc.subjectcondensin-i
dc.subjectprotein complexes
dc.subjectsmc5-smc6 complex
dc.subjectvertebrate cells
dc.subjectbudding yeast
dc.subjectsystematic analysis
dc.subjectcohesin complexes
dc.subjecttopoisomerase-ii
dc.titleProteomics analysis with a nano random forest approach reveals novel functional interactions regulated by smc complexes on mitotic chromosomes
dc.typeArticle
dc.identifier.doi10.1074/mcp.m116.057885
dc.local.publishedsourcehttp://www.mcponline.org/content/15/8/2802.full.pdf
nui.item.downloads0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland