Show simple item record

dc.contributor.authorMurphy, J. G.
dc.date.accessioned2018-09-20T16:18:43Z
dc.date.available2018-09-20T16:18:43Z
dc.date.issued2013-11-20
dc.identifier.citationMurphy, J. G. (2013). Evolution of anisotropy in soft tissue. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470 (2161),
dc.identifier.issn1364-5021,1471-2946
dc.identifier.urihttp://hdl.handle.net/10379/13036
dc.description.abstractThe phenomenological approach to the modelling of the mechanical response of arteries usually assumes a reduced form of the strain-energy function in order to reduce the mathematical complexity of the model. A common approach eschews the full basis of seven invariants for the strain-energy function in favour of a reduced set of only three invariants. It is shown that this reduced form is not consistent with the corresponding full linear theory based on infinitesimal strains. It is proposed that compatibility with the linear theory is an essential feature of any nonlinear model of arterial response. Two approaches towards ensuring such compatibility are proposed. The first is that the nonlinear theory reduces to the full six-constant linear theory, without any restrictions being imposed on the constants. An alternative modelling strategy whereby an anisotropic material is compatible with a simpler material in the linear limit is also proposed. In particular, necessary and sufficient conditions are obtained for a nonlinear anisotropic material to be compatible with an isotropic material for infinitesimal deformations. Materials that satisfy these conditions should be useful in the modelling of the crimped collagen fibres in the undeformed configuration.
dc.publisherThe Royal Society
dc.relation.ispartofProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectanisotropic materials
dc.subjectarterial tissue
dc.subjecttwo families of fibres
dc.subjectnonlinearly elastic solids
dc.subjectartery
dc.titleEvolution of anisotropy in soft tissue
dc.typeArticle
dc.identifier.doi10.1098/rspa.2013.0548
dc.local.publishedsourcehttp://rspa.royalsocietypublishing.org/content/royprsa/470/2161/20130548.full.pdf
nui.item.downloads0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland