Show simple item record

dc.contributor.authorMohr, A
dc.contributor.authorBüneker, C
dc.contributor.authorGough, R P
dc.contributor.authorZwacka, R M
dc.date.accessioned2018-09-20T16:18:02Z
dc.date.available2018-09-20T16:18:02Z
dc.date.issued2007-07-23
dc.identifier.citationMohr, A; Büneker, C; Gough, R P; Zwacka, R M (2007). Mnsod protects colorectal cancer cells from trail-induced apoptosis by inhibition of smac/diablo release. Oncogene 27 (6), 763-774
dc.identifier.issn0950-9232,1476-5594
dc.identifier.urihttp://hdl.handle.net/10379/12928
dc.description.abstractThe mitochondrial enzyme manganese superoxide dismutase (MnSOD) has been shown to have two faces with regard to its role in tumor development. On the one side, it is well documented that overexpression of MnSOD slows down cancer cell growth, whereas on the other side MnSOD also has a metastasis-promoting activity. We set out to examine the role of MnSOD in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, thought to be a first-line tumor surveillance mechanism and failure to undergo apoptosis might contribute to metastasis formation. We show that overexpression of MnSOD at moderate levels is able to protect cells from TRAIL-induced apoptosis. While caspase-8 activation and Bid cleavage were not affected by MnSOD, we detected a marked decrease in caspase-3 activation pointing to a mitochondrial resistance mechanism. Indeed, we found that MnSOD-overexpressing cells showed reduced cytochrome c and no Smac/DIABLO release into the cytosol. The resulting lack of X-linked inhibitor of apoptosis (XIAP) inhibition by cytosolic Smac/DIABLO most likely caused the TRAIL resistance as RNAi against XIAP-rescued caspase-3 activity and TRAIL sensitivity. Our results show that reactive oxygen species are involved in TRAIL-induced Smac/DIABLO release and in TRAIL-triggered apoptosis. Hence, high levels of MnSOD, which decompose and neutralize these reactive oxygen species, might contribute to metastasis formation by allowing disseminated tumor cells to escape from TRAIL-mediated tumor surveillance. As part of TRAIL regimens, adjuvant treatment with XIAP inhibitors in the form of Smac/DIABLO mimetics or MnSOD inhibitors might be able to break TRAIL resistance of malignant tumor cells.
dc.publisherSpringer Nature
dc.relation.ispartofOncogene
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectapoptosis
dc.subjectmnsod
dc.subjecttrail
dc.subjectxiap
dc.subjectsmac/diablo
dc.subjectcolon cancer
dc.subjectmanganese superoxide-dismutase
dc.subjecttumor-necrosis-factor
dc.subjectnf-kappa-b
dc.subjectredox gene-therapy
dc.subjectpancreatic adenocarcinoma
dc.subjectmatrix metalloproteinases
dc.subjectantioxidant enzymes
dc.subjectconfers resistance
dc.subjectoverexpression
dc.subjectexpression
dc.titleMnsod protects colorectal cancer cells from trail-induced apoptosis by inhibition of smac/diablo release
dc.typeArticle
dc.identifier.doi10.1038/sj.onc.1210673
dc.local.publishedsourcehttp://www.nature.com/onc/journal/v27/n6/pdf/1210673a.pdf
nui.item.downloads0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland