Show simple item record

dc.contributor.authorGrant, O. C.
dc.contributor.authorSmith, H. M.
dc.contributor.authorFirsova, D.
dc.contributor.authorFadda, E.
dc.contributor.authorWoods, R. J.
dc.date.accessioned2018-09-20T16:09:34Z
dc.date.available2018-09-20T16:09:34Z
dc.date.issued2013-09-20
dc.identifier.citationGrant, O. C. Smith, H. M.; Firsova, D.; Fadda, E.; Woods, R. J. (2013). Presentation, presentation, presentation! molecular-level insight into linker effects on glycan array screening data. Glycobiology 24 (1), 17-25
dc.identifier.issn0959-6658,1460-2423
dc.identifier.urihttp://hdl.handle.net/10379/11711
dc.description.abstractChanges in cell-surface glycan patterns are markers of the presence of many different disease and cancer types, offering a relatively untapped niche for glycan-targeting reagents and therapeutics in diagnosis and treatment. Of paramount importance for the success of any glycan-targeting reagent is the ability to specifically recognize the target among the plethora of different glycans that exist in the human body. The preeminent technique for defining specificity is glycan array screening, in which a glycan-binding protein (GBP) can be simultaneously screened against multiple glycans. Glycan array screening has provided unparalleled insight into GBP specificity, but data interpretation suffers from difficulties in identifying false-negative binding arising from altered glycan presentation, associated with the linker used to conjugate the glycan to the surface. In this work, we model the structure and dynamics of the linkers employed in the glycan arrays developed by the Consortium for Functional Glycomics. The modeling takes into account the physical presence and surface polarity of the array, and provides a structure-based rationalization of false-negative results arising from the so-called "linker effect." The results also serve as a guide for interpreting glycan array screening data in a biological context; in particular, we show that attempts to employ natural amino acids as linkers may be prone to unexpected artifacts compromising glycan recognition.
dc.publisherOxford University Press (OUP)
dc.relation.ispartofGlycobiology
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectglycan array screening
dc.subjectglycan-binding protein
dc.subjectglycan specificity
dc.subjectlinker effects
dc.subjectmolecular dynamics
dc.subjectmonoclonal-antibody
dc.subjectglycosylation sites
dc.subjectcancer progression
dc.subjectbinding-proteins
dc.subjectforce-field
dc.subjectantigen
dc.subjectamber
dc.subjectsystem
dc.titlePresentation, presentation, presentation! molecular-level insight into linker effects on glycan array screening data
dc.typeArticle
dc.identifier.doi10.1093/glycob/cwt083
dc.local.publishedsourcehttps://academic.oup.com/glycob/article-pdf/24/1/17/16657568/cwt083.pdf
nui.item.downloads0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland