Show simple item record

dc.contributor.authorBroin, Pilib Ó
dc.contributor.authorSmith, Terry J
dc.contributor.authorGolden, Aaron AJ
dc.date.accessioned2018-09-20T16:01:43Z
dc.date.available2018-09-20T16:01:43Z
dc.date.issued2015-01-28
dc.identifier.citationBroin, Pilib Ó; Smith, Terry J; Golden, Aaron AJ (2015). Alignment-free clustering of transcription factor binding motifs using a genetic-k-medoids approach. BMC Bioinformatics 16 ,
dc.identifier.issn1471-2105
dc.identifier.urihttp://hdl.handle.net/10379/10548
dc.description.abstractBackground: Familial binding profiles (FBPs) represent the average binding specificity for a group of structurally related DNA-binding proteins. The construction of such profiles allows the classification of novel motifs based on similarity to known families, can help to reduce redundancy in motif databases and de novo prediction algorithms, and can provide valuable insights into the evolution of binding sites. Many current approaches to automated motif clustering rely on progressive tree-based techniques, and can suffer from so-called frozen sub-alignments, where motifs which are clustered early on in the process remain 'locked' in place despite the potential for better placement at a later stage. In order to avoid this scenario, we have developed a genetic-k-medoids approach which allows motifs to move freely between clusters at any point in the clustering process. Results: We demonstrate the performance of our algorithm, GMACS, on multiple benchmark motif datasets, comparing results obtained with current leading approaches. The first dataset includes 355 position weight matrices from the TRANSFAC database and indicates that the k-mer frequency vector approach used in GMACS outperforms other motif comparison techniques. We then cluster a set of 79 motifs from the JASPAR database previously used in several motif clustering studies and demonstrate that GMACS can produce a higher number of structurally homogeneous clusters than other methods without the need for a large number of singletons. Finally, we show the robustness of our algorithm to noise on multiple synthetic datasets consisting of known motifs convolved with varying degrees of noise. Conclusions: Our proposed algorithm is generally applicable to any DNA or protein motifs, can produce highly stable and biologically meaningful clusters, and, by avoiding the problem of frozen sub-alignments, can provide improved results when compared with existing techniques on benchmark datasets.
dc.publisherSpringer Nature
dc.relation.ispartofBMC Bioinformatics
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjecttranscription factor
dc.subjectmotif
dc.subjectclustering
dc.subjectgenetic algorithm
dc.subjectposition frequency matrices
dc.subjectsequence alignment
dc.subjectsites
dc.subjectsimilarities
dc.subjectalgorithm
dc.subjectprofiles
dc.subjectdiscovery
dc.subjectfamilies
dc.subjectdatabase
dc.titleAlignment-free clustering of transcription factor binding motifs using a genetic-k-medoids approach
dc.typeArticle
dc.identifier.doi10.1186/s12859-015-0450-2
dc.local.publishedsourcehttps://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-015-0450-2?site=bmcbioinformatics.biomedcentral.com
nui.item.downloads0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland