Show simple item record

dc.contributor.authorTuite, Michael P.
dc.date.accessioned2012-01-09T13:44:08Z
dc.date.available2012-01-09T13:44:08Z
dc.date.issued1999
dc.identifier.citationMichael P. Tuite(1999)Genus Two Meromorphic Conformal Field Theory, CRM Proceedings & Lecture Notes 30, 231-251 (2001).en_US
dc.identifier.urihttp://hdl.handle.net/10379/2454
dc.description.abstractWe construct the genus two (or two loop) partition function for meromorphic bosonic conformal field theories. We use a sewing procedure involving two genus one tori by exploiting an explicit relationship between the genus two period matrix and pinching modular parameters. We obtain expressions for the partition function for the chiral bosonic string, even rank lattice theories and self-dual meromorphic conformal field theories including the Moonshine Module. In particular, we find that for self-dual theories with central charge 24, the genus two partition function multiplied by a universal holomorphic function of the moduli is given by a meromorphic Siegel modular form of weight 2 where this universal function includes ghost contributions. We also discuss a novel expansion for certain Siegel modular forms.
dc.formatapplication/pdfen_US
dc.language.isoenen_US
dc.subjectMathematics - Quantum Algebra
dc.subjectHigh Energy Physics - Theory
dc.subjectMathematics - Number Theory
dc.subject81T40
dc.subject17B69 (Primary) 11F11
dc.subject11F46 (Secondary)
dc.titleGenus Two Meromorphic Conformal Field Theoryen_US
dc.typeArticleen_US
dc.local.publishedsourcehttp://arxiv.org/pdf/math/9910136en_US
dc.description.peer-reviewedpeer-revieweden_US
dc.local.authorsMichael P. Tuite
dc.local.arxividmath/9910136
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record