Show simple item record

dc.contributor.authorIvanov, Rossen I.
dc.contributor.authorTuite, Michael P.
dc.date.accessioned2012-01-09T13:44:08Z
dc.date.available2012-01-09T13:44:08Z
dc.date.issued2001
dc.identifier.citationRossen I. Ivanov and Michael P. Tuite(2001)Rational Generalised Moonshine from Abelian Orbifoldings of the Moonshine Module, Nucl.Phys. B635 (2002) 435-472en_US
dc.identifier.urihttp://hdl.handle.net/10379/2453
dc.description.abstractWe consider orbifoldings of the Moonshine Module with respect to the abelian group generated by a pair of commuting Monster group elements with one of prime order $p=2,3,5,7$ and the other of order $pk$ for $k=1$ or $k$ prime. We show that constraints arising from meromorphic orbifold conformal field theory allow us to demonstrate that each orbifold partition function with rational coefficients is either constant or is a hauptmodul for an explicitly found modular fixing group of genus zero. We thus confirm in the cases considered the Generalised Moonshine conjectures for all rational modular functions for the Monster centralisers related to the Baby Monster, Fischer, Harada-Norton and Held sporadic simple groups. We also derive non-trivial constraints on the possible Monster conjugacy classes to which the elements of the orbifolding abelian group may belong.
dc.formatapplication/pdfen_US
dc.language.isoenen_US
dc.subjectMathematics - Quantum Algebra
dc.subjectHigh Energy Physics - Theory
dc.subjectMathematics - Group Theory
dc.titleRational Generalised Moonshine from Abelian Orbifoldings of the Moonshine Moduleen_US
dc.typeArticleen_US
dc.local.publishedsourcehttp://arxiv.org/pdf/math/0106027en_US
dc.description.peer-reviewedpeer-revieweden_US
dc.local.authorsRossen I. Ivanov and Michael P. Tuite
dc.local.arxividmath/0106027
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record