Show simple item record

dc.contributor.authorMason, Geoffrey
dc.contributor.authorTuite, Michael P.
dc.date.accessioned2012-01-09T13:44:07Z
dc.date.available2012-01-09T13:44:07Z
dc.date.issued2006
dc.identifier.citationGeoffrey Mason and Michael P. Tuite(2006)On Genus Two Riemann Surfaces Formed from Sewn Tori, Commun.Math.Phys. 270 (2007) 587-634en_US
dc.identifier.urihttp://hdl.handle.net/10379/2450
dc.description.abstractWe describe the period matrix and other data on a higher genus Riemann surface in terms of data coming from lower genus surfaces via an explicit sewing procedure. We consider in detail the construction of a genus two Riemann surface by either sewing two punctured tori together or by sewing a twice-punctured torus to itself. In each case the genus two period matrix is explicitly described as a holomorphic map from a suitable domain (parameterized by genus one moduli and sewing parameters) to the Siegel upper half plane $\mathbb{H}_{2}$. Equivariance of these maps under certain subgroups of $Sp(4,\mathbb{Z)}$ is shown. The invertibility of both maps in a particular domain of $\mathbb{H}_{2}$ is also shown.
dc.formatapplication/pdfen_US
dc.language.isoenen_US
dc.subjectMathematics - Quantum Algebra
dc.subjectHigh Energy Physics - Theory
dc.subjectMathematics - Complex Variables
dc.titleOn Genus Two Riemann Surfaces Formed from Sewn Torien_US
dc.typeArticleen_US
dc.local.publishedsourcehttp://arxiv.org/pdf/math/0603088en_US
dc.description.peer-reviewedpeer-revieweden_US
dc.local.authorsGeoffrey Mason and Michael P. Tuite
dc.local.arxividmath/0603088
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record