Show simple item record

dc.contributor.authorMason, Geoffrey
dc.contributor.authorTuite, Michael P.
dc.contributor.authorZuevsky, Alexander
dc.date.accessioned2012-01-09T13:44:07Z
dc.date.available2012-01-09T13:44:07Z
dc.date.issued2007
dc.identifier.citationGeoffrey Mason, Michael P. Tuite and Alexander Zuevsky(2007)Torus n-Point Functions for $\mathbb{R}$-graded Vertex Operator Superalgebras and Continuous Fermion Orbifolds, Geoffrey Mason, Michael P. Tuite and Alexander Zuevskyen_US
dc.identifier.urihttp://hdl.handle.net/10379/2448
dc.description.abstractWe consider genus one n-point functions for a vertex operator superalgebra with a real grading. We compute all n-point functions for rank one and rank two fermion vertex operator superalgebras. In the rank two fermion case, we obtain all orbifold n-point functions for a twisted module associated with a continuous automorphism generated by a Heisenberg bosonic state. The modular properties of these orbifold n-point functions are given and we describe a generalization of Fay's trisecant identity for elliptic functions.
dc.formatapplication/pdfen_US
dc.language.isoenen_US
dc.subjectMathematics - Quantum Algebra
dc.subjectHigh Energy Physics - Theory
dc.titleTorus n-Point Functions for $\mathbb{R}$-graded Vertex Operator Superalgebras and Continuous Fermion Orbifoldsen_US
dc.typeArticleen_US
dc.local.publishedsourcehttp://arxiv.org/pdf/0708.0640en_US
dc.description.peer-reviewedpeer-revieweden_US
dc.local.authorsGeoffrey Mason, Michael P. Tuite and Alexander Zuevsky
dc.local.arxivid0708.0640
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record