Show simple item record

dc.contributor.authorMason, Geoffrey
dc.contributor.authorTuite, Michael P.
dc.date.accessioned2012-01-09T13:44:07Z
dc.date.available2012-01-09T13:44:07Z
dc.date.issued2007
dc.identifier.citationGeoffrey Mason and Michael P. Tuite(2007)The Genus Two Partition Function for Free Bosonic and Lattice Vertex Operator Algebras, Geoffrey Mason and Michael P. Tuiteen_US
dc.identifier.urihttp://hdl.handle.net/10379/2447
dc.description.abstractWe define the $n$-point function for a vertex operator algebra on a genus two Riemann surface in two separate sewing schemes where either two tori are sewn together or a handle is sewn to one torus. We explicitly obtain closed formulas for the genus two partition function for the Heisenberg free bosonic string and lattice vertex operator algebras in both sewing schemes. We prove that the partition functions are holomorphic in the sewing parameters on given suitable domains and describe their modular properties. Finally, we show that the partition functions cannot be equal in the neighborhood of a two-tori degeneration point where they can be explicitly compared.
dc.formatapplication/pdfen_US
dc.language.isoenen_US
dc.subjectMathematics - Quantum Algebra
dc.subjectHigh Energy Physics - Theory
dc.subjectMathematics - Number Theory
dc.titleThe Genus Two Partition Function for Free Bosonic and Lattice Vertex Operator Algebrasen_US
dc.typeArticleen_US
dc.local.publishedsourcehttp://arxiv.org/pdf/0712.0628en_US
dc.description.peer-reviewedpeer-revieweden_US
dc.local.authorsGeoffrey Mason and Michael P. Tuite
dc.local.arxivid0712.0628
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record