Show simple item record

dc.contributor.authorMason, Geoffrey
dc.contributor.authorTuite, Michael P.
dc.date.accessioned2012-01-09T13:44:06Z
dc.date.available2012-01-09T13:44:06Z
dc.date.issued2009
dc.identifier.citationGeoffrey Mason and Michael P. Tuite(2009)Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces I, Commun. Math. Phys. 300, 673-713 (2010)en_US
dc.identifier.urihttp://hdl.handle.net/10379/2443
dc.description.abstractWe define the partition and $n$-point functions for a vertex operator algebra on a genus two Riemann surface formed by sewing two tori together. We obtain closed formulas for the genus two partition function for the Heisenberg free bosonic string and for any pair of simple Heisenberg modules. We prove that the partition function is holomorphic in the sewing parameters on a given suitable domain and describe its modular properties for the Heisenberg and lattice vertex operator algebras and a continuous orbifolding of the rank two fermion vertex operator super algebra. We compute the genus two Heisenberg vector $n$-point function and show that the Virasoro vector one point function satisfies a genus two Ward identity for these theories.
dc.formatapplication/pdfen_US
dc.language.isoenen_US
dc.subjectMathematics - Quantum Algebra
dc.subjectHigh Energy Physics - Theory
dc.subjectMathematics - Number Theory
dc.titleFree Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces Ien_US
dc.typeArticleen_US
dc.local.publishedsourcehttp://arxiv.org/pdf/0912.0117en_US
dc.description.peer-reviewedpeer-revieweden_US
dc.local.authorsGeoffrey Mason and Michael P. Tuite
dc.local.arxivid0912.0117
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record