## A Generalized Vertex Operator Algebra for Heisenberg Intertwiners

dc.contributor.author | Tuite, Michael P. | |

dc.contributor.author | Zuevsky, Alexander | |

dc.date.accessioned | 2011-12-22T13:51:40Z | |

dc.date.available | 2011-12-22T13:51:40Z | |

dc.date.issued | 2011 | |

dc.identifier.citation | Michael P. Tuite and Alexander Zuevsky(2011)A Generalized Vertex Operator Algebra for Heisenberg Intertwiners, Michael P. Tuite and Alexander Zuevsky | en_US |

dc.identifier.uri | http://hdl.handle.net/10379/2429 | |

dc.description.abstract | We consider the extension of the Heisenberg vertex operator algebra by all its irreducible modules. We give an elementary construction for the intertwining vertex operators and show that they satisfy a complex parametrized generalized vertex operator algebra. We illustrate some of our results with the example of integral lattice vertex operator superalgebras. | |

dc.format | application/pdf | en_US |

dc.language.iso | en | en_US |

dc.subject | Mathematics - Quantum Algebra | |

dc.subject | High Energy Physics - Theory | |

dc.title | A Generalized Vertex Operator Algebra for Heisenberg Intertwiners | en_US |

dc.type | Article | en_US |

dc.local.publishedsource | http://arxiv.org/pdf/1106.6149 | en_US |

dc.description.peer-reviewed | peer-reviewed | en_US |

dc.local.authors | Michael P. Tuite and Alexander Zuevsky | |

dc.local.arxivid | 1106.6149 | |

nui.item.downloads | 0 |