Show simple item record

dc.contributor.authorTuite, Michael P.
dc.contributor.authorZuevsky, Alexander
dc.date.accessioned2011-12-22T13:51:40Z
dc.date.available2011-12-22T13:51:40Z
dc.date.issued2011
dc.identifier.citationMichael P. Tuite and Alexander Zuevsky(2011)A Generalized Vertex Operator Algebra for Heisenberg Intertwiners, Michael P. Tuite and Alexander Zuevskyen_US
dc.identifier.urihttp://hdl.handle.net/10379/2429
dc.description.abstractWe consider the extension of the Heisenberg vertex operator algebra by all its irreducible modules. We give an elementary construction for the intertwining vertex operators and show that they satisfy a complex parametrized generalized vertex operator algebra. We illustrate some of our results with the example of integral lattice vertex operator superalgebras.
dc.formatapplication/pdfen_US
dc.language.isoenen_US
dc.subjectMathematics - Quantum Algebra
dc.subjectHigh Energy Physics - Theory
dc.titleA Generalized Vertex Operator Algebra for Heisenberg Intertwinersen_US
dc.typeArticleen_US
dc.local.publishedsourcehttp://arxiv.org/pdf/1106.6149en_US
dc.description.peer-reviewedpeer-revieweden_US
dc.local.authorsMichael P. Tuite and Alexander Zuevsky
dc.local.arxivid1106.6149
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record