Show simple item record

dc.contributor.advisorGlavin, Martin
dc.contributor.advisorJones, Edward
dc.contributor.authorO'Malley, Ronan
dc.description.abstractStatistics show that a disproportionate amount of road fatalities occur at night-time despite the greatly reduced volume of traffic on roads. This thesis describes a system aimed at addressing this issue by automatically detecting the two main categories of road users: other road vehicles and pedestrians. A vehicle detection system using a visible spectrum camera and a pedestrian detection system using an infrared camera are presented, followed by a fusion of these systems. An image processing system to detect and track vehicles using their lamps is presented. As the appearance of vehicle lamps in video can vary depending on camera hardware, a camera configuration process is implemented. To identify red tail- and brake-lamps, parameters for a red colour threshold are derived from automotive regulations. Higher intensity headlamps are identified by utilising a seeded region growing technique. To obtain vehicle location data from identified lamps, they are paired using bilateral symmetry analysis. This is assessed by means of image cross-correlation, a shape and size independent approach to symmetry analysis. However, images of vehicle headlamps and tail-lamps suffer from perspective distortion during road manoeuvres, such as turning, engaging road bends and overtaking. A projective image transformation corrects for this perspective distortion, ensuring consistent detection performance through these road manoeuvres. A night-time pedestrian detection system, based on the processing of Far-Infrared video, is presented. A pre-processing step is introduced, which compensates for distortion caused by clothing, using vertically-biased morphological closing. Regions Of Interest (ROIs) are identified using a region growing technique with high intensity seeds and feature-based stopping criteria. Histogram of Oriented Gradients (HOG) features are calculated from a database of images to train a Support Vector Machine (SVM) classifier. Finally, advantages are attained by implementing a cooperative fusion of the visual vehicle detection and IR pedestrian detection systems. Vehicle location extracted from the visual system is used to mask the IR frame, removing warm vehicle parts such as lamps, tyres and exhaust pipes. This reduces the probability of false positives in pedestrian detection. Pedestrians detected in IR video are highlighted in the visual image, making pedestrians much more visible for human video consumers. This research aims to contribute to a safer road environment at night for both drivers and pedestrians.en_US
dc.subjectcomputer visionen_US
dc.subjectmachine visionen_US
dc.subjectimage processingen_US
dc.subjectvehicle safetyen_US
dc.subjectintelligent transportation systemsen_US
dc.subjectdriver safetyen_US
dc.subjectvehicle detectionen_US
dc.subjectpedestrian detectionen_US
dc.subjectroad safetyen_US
dc.subjectmachine learningen_US
dc.titleVision Algorithms and Systems for Vehicle and Pedestrian Detection in Night Time Conditions Using Vehicle Mounted Camerasen_US
dc.local.noteThis thesis presents an automotive computer system which detects road vehicles and pedestrians at night. Vehicles are detected by identifying lamps using regular camera hardware. Pedestrians are detected using thermal imaging. This enables warning of drivers or deploying of safety systems when an impending collision is detected. The research aims to reduce the number of road collisions at night.en_US

Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record