Show simple item record

dc.contributor.authorDuggan, Jimen
dc.identifier.citationDuggan, J. (2008). Equation-based policy optimization for agent-oriented system dynamics models. 'System Dynamics Review', 24(1), 97-118.en
dc.description.abstractWithin system dynamics, optimization has played an important role in identifying the best range of parameter values for policies in any given model. Optimal solutions focus on discovering the best combination of model parameters, within a fixed policy equation structure, that maximize or minimize a payoff function. This paper presents a new optimization approach for system dynamics. It enables decision makers to vary policy equation structures during the optimization process. The resulting optimization approach - based on genetic algorithms - can explore the search space in order to discover the best combination of parameters and equation-based strategies for a given system dynamics problem. The approach is best suited to the class of system dynamics problems that are agent-based, and the work is evaluated using a case study based on the four-agent beer gameen
dc.publisherWiley Blackwellen
dc.subject.lcshInformation technologyen
dc.titleEquation-based policy optimization for agent-oriented system dynamics modelsen

Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record