Show simple item record

dc.contributor.authorStack, Cora
dc.date.accessioned2018-08-24T08:26:28Z
dc.date.available2018-08-24T08:26:28Z
dc.date.issued1996-11-01
dc.identifier.citationStack, Cora (1996). Dimensions of nilpotent algebras over fields of prime characteristic. Pacific Journal of Mathematics 176 (1), 263-266
dc.identifier.issn0030-8730,0030-8730
dc.identifier.urihttp://hdl.handle.net/10379/9903
dc.description.abstractIn this short paper we consider the conjecture that for a finite dimensional commutative nilpotent algebra M over a perfect field of prime characteristic p, dim M greater than or equal to p dim M((p)) where M(p) is the subalgebra of M generated by x(p), x is an element of M. We prove that for any finite dimensional nilpotent algebra M (not necessarily commutative) over any field of prime characteristic p, dim M greater than or equal to p dim M((p)) for dim M((p)) less than or equal to 2.
dc.publisherMathematical Sciences Publishers
dc.relation.ispartofPacific Journal of Mathematics
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.titleDimensions of nilpotent algebras over fields of prime characteristic
dc.typeArticle
dc.identifier.doi10.2140/pjm.1996.176.263
dc.local.publishedsourcehttp://msp.org/pjm/1996/176-1/pjm-v176-n1-p15-s.pdf
nui.item.downloads0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland