Show simple item record

dc.contributor.authorAGARWAL, RAVI P.
dc.contributor.authorO'REGAN, DONAL
dc.contributor.authorSTANĚK, SVATOSLAV
dc.date.accessioned2018-08-24T08:23:57Z
dc.date.available2018-08-24T08:23:57Z
dc.date.issued2004-09-01
dc.identifier.citationAGARWAL, RAVI P. O'REGAN, DONAL; STANĚK, SVATOSLAV (2004). Positive solutions of nonlocal singular boundary value problems. Glasgow Mathematical Journal 46 , 537-550
dc.identifier.issn0017-0895,1469-509X
dc.identifier.urihttp://hdl.handle.net/10379/8805
dc.description.abstractThe paper presents the existence result for positive solutions of the differential equation (g(x))" = f(t, x, (g(x))') satisfying the nonlocal boundary conditions x(0) = x(T), min{x(t) : t E J} = 0. Here the positive function f satisfies local Caratheodory conditions on [0, T] x (0, infinity) x (R\{0}) and f may be singular at the value 0 of both its phase variables. Existence results are proved by Leray-Schauder degree theory and Vitali's convergence theorem.
dc.publisherCambridge University Press (CUP)
dc.relation.ispartofGlasgow Mathematical Journal
dc.subjectexistence theory
dc.subjectequations
dc.subjectdirichlet
dc.titlePositive solutions of nonlocal singular boundary value problems
dc.typeArticle
dc.identifier.doi10.1017/s0017089504001983
dc.local.publishedsourcehttps://www.cambridge.org/core/services/aop-cambridge-core/content/view/F6965B0AA07A846969CD9607DB538BA6/S0017089504001983a.pdf/div-class-title-positive-solutions-of-nonlocal-singular-boundary-value-problems-div.pdf
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record