Show simple item record

dc.contributor.authorHromic, Hugo
dc.contributor.authorHayes, Conor
dc.date.accessioned2018-07-03T13:13:30Z
dc.date.available2018-07-03T13:13:30Z
dc.date.issued2018-07-03
dc.identifier.citationHromic, Hugo , & Hayes, Conor. (2018). Characterising and evaluating online communities from live microblogging user interactions.en_IE
dc.identifier.urihttp://hdl.handle.net/10379/7421
dc.description.abstractMicroblogging (mainly represented by Twitter) is a type of social media that focuses on fast open real-time communication using short messages between users and their followers. This system is attractive due to its open nature and agile content sharing, leading to a compelling and popular social media platform which generates large amounts of content by the minute. Community finding techniques are an interesting approach for organising this massive content but there is no clear agreement in the literature for a standard definition of user community for the microblogging use case, leading to unreliable ground-truth data and evaluation. In this work, we differentiate between functional and structural definitions of communities for microblogging. A functional community groups its users by a common independent social function, e.g. fans of the same football team, while in a structural community the members exclusively depend on their connectivity in a network, e.g. modularity. We build and characterise eight types of functional communities to be used as user-labelled ground-truth and five types of live user interactions networks from Twitter. We then evaluate thirteen popular structural community definitions using five different Twitter datasets, exploring their goodness and robustness for detecting the functional ground-truth under different perturbation strategies. Our results show that definitions based on internal connectivity, e.g. Triangle Participation Ratio, Fraction Over Median Degree or Conductance work best for the Twitter use-case and are very robust. On the other hand, classic scores such as Modularity are limited and do not fit very well due to the sparsity and noise of microblogging. An implementation of our experimental framework is also made availableen_IE
dc.formatapplication/pdfen_IE
dc.publisherNUI Galwayen_IE
dc.subjectCommunity detectionen_IE
dc.subjectEmpirical evaluationen_IE
dc.subjectMicrobloggingen_IE
dc.subjectTwitteren_IE
dc.subjectGround-truthen_IE
dc.subjectGraph miningen_IE
dc.titleCharacterising and evaluating online communities from live microblogging user interactionsen_IE
dc.typeConference Paperen_IE
dc.local.publishedsourcehttps://doi.org/10.13025/S8D34R
dc.description.peer-reviewedpeer-revieweden_IE
nui.item.downloads98


Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

Thumbnail

This item appears in the following Collection(s)

Show simple item record