Now showing items 1-5 of 5

• #### Construction of upper and lower solutions for singular discrete initial and boundary value problems via inequality theory ﻿

(Springer Nature, 2005-01-01)
We present new existence results for singular discrete initial and boundary value problems. In particular our nonlinearity may be singular in its dependent variable and is allowed to change sign.
• #### Eigenvalues and the one-dimensional p-laplacian ﻿

(Elsevier BV, 2002-02-01)
• #### Existence and multiplicity of positive solutions for singular semipositone \$p\$-laplacian equations ﻿

(Canadian Mathematical Society, 2006-06-01)
Positive solutions are obtained for the boundary value problem [GRAPHICS] Here f(t, u) &gt;= -M, (M is a positive constant) for (t, u) is an element of [0, 1] X (0, infinity). We will show the existence of two positive ...
• #### Existence theorems for the one-dimensional singular p-laplacian equation with a nonlinear boundary condition ﻿

(Elsevier BV, 2005-10-01)
• #### Upper and lower solutions for the singular &lt;mml:math altimg=&quot;si1.gif&quot; overflow=&quot;scroll&quot; xmlns:xocs=&quot;http://www.elsevier.com/xml/xocs/dtd&quot; xmlns:xs=&quot;http://www.w3.org/2001/xmlschema&quot; xmlns:xsi=&quot;http://www.w3.org/2001/xmlschema-instance&quot; xmlns=&quot;http://www.elsevier.com/xml/ja/dtd&quot; xmlns:ja=&quot;http://www.elsevier.com/xml/ja/dtd&quot; xmlns:mml=&quot;http://www.w3.org/1998/math/mathml&quot; xmlns:tb=&quot;http://www.elsevier.com/xml/common/table/dtd&quot; xmlns:sb=&quot;http://www.elsevier.com/xml/common/struct-bib/dtd&quot; xmlns:ce=&quot;http://www.elsevier.com/xml/common/dtd&quot; xmlns:xlink=&quot;http://www.w3.org/1999/xlink&quot; xmlns:cals=&quot;http://www.elsevier.com/xml/common/cals/dtd&quot;&gt;&lt;mml:mi&gt;p&lt;/mml:mi&gt;&lt;/mml:math&gt;-laplacian with sign changing nonlinearities and nonlinear boundary data ﻿

(Elsevier BV, 2005-09-01)