Show simple item record

dc.contributor.advisorBrown, Colin
dc.contributor.advisorDuffy, Garret
dc.contributor.authorJoshi, Siddhi
dc.date.accessioned2016-11-11T10:05:13Z
dc.date.issued2016-11-11
dc.identifier.urihttp://hdl.handle.net/10379/6155
dc.description.abstractSediment mobility modelling is a useful tool for scientifically robust marine spatial planning and characterisation of the benthic disturbance regime. As a prerequisite to modelling sediment transport of free living coralline algae habitats known as maerl or rhodolith, it is necessary to know fundamental hydrodynamic properties of this biogenic sediment. Two hydrodynamic properties, settling velocity and critical bed shear stress of maerl from three contrasting hydrodynamic regimes, have been determined. In Chapter 2, the settling velocity of maerl has been experimentally measured and rigorously compared with theoretical models of settling velocity and detailed grain shape parameters. Quantitative modifications of the Ferguson and Church (2004) equation for settling velocity have been made by allowing the drag coefficient C2 parameter, which equates to the reciprocal of the convexity of the maerl grain, to vary with grain size. In Chapter 3, the critical bed shear stress of maerl is experimentally determined using three techniques; Law of the Wall, Turbulent Kinetic Energy and Reynolds Stress. The results show that maerl has a lower critical Shields parameter than quartz grains of an equivalent sieve diameter primarily due to their highly-irregular grain shape leading to greater drag experienced by the maerl grains and the relative grain protrusion. In Chapter 4, coupled hydrodynamic-wave-sediment transport models are computed using the DHI MIKE 21 suite of modelling tools and subsequently utilised to compute the spatially-varying tidally-induced sediment mobility and combined wave-current induced sediment mobility during calm and storm conditions. A grid of spatially-varying critical Shields parameter is computed for maerl areas and areas of Galway Bay with quartz siliciclastic sediments. Maerl is present at the periphery of wave-induced residual current gyres during storm conditions. The peak combined wave-current induced Mobilization Frequency Index during storm conditions is the key hydrodynamic parameter governing the distribution of maerl and siliciclastic sediments and is the most useful physical surrogate for maerl in predictive habitat suitability modelling studies. The thesis concludes by evaluating the utility of sediment mobility indices for marine spatial planning and for the design of Marine Protected Areas (MPAs).en_IE
dc.subjectOceanographyen_IE
dc.subjectRhodolithen_IE
dc.subjectMaerlen_IE
dc.subjectCoralline algaeen_IE
dc.subjectGalway Bayen_IE
dc.subjectEarth and Ocean Scienceen_IE
dc.subjectMarine conservationen_IE
dc.subjectSediment dynamicsen_IE
dc.subjectMarine geologyen_IE
dc.subjectCarbonate sedimentologyen_IE
dc.subjectMarine biologyen_IE
dc.titleSediment mobility modelling and hydrodynamic properties of maerlen_IE
dc.typeThesisen_IE
dc.contributor.funderGriffith Geoscience Research Award, Geological Survey of Irelanden_IE
dc.local.noteMaerl or rhodolith beds are coralline algae habitats of great conservation significance. Experimental work to determine the fundamental hydrodynamic properties of maerl is carried out. Multibeam and LiDAR data from the INFOMAR national seabed mapping programme are being used as part of coupled hydrodynamic-wave-sediment transport models driving maerl distribution.en_IE
dc.local.finalYesen_IE
nui.item.downloads264


Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

Thumbnail

This item appears in the following Collection(s)

Show simple item record