Show simple item record

dc.contributor.authorSarathy, S. Mani
dc.contributor.authorJaved, Tamour
dc.contributor.authorKarsenty, Florent
dc.contributor.authorHeufer, Alexander
dc.contributor.authorWang, Weijing
dc.contributor.authorPark, Sungwoo
dc.contributor.authorElwardany, Ahmed
dc.contributor.authorFarooq, Aamir
dc.contributor.authorWestbrook, Charles K.
dc.contributor.authorPitz, William J.
dc.contributor.authorOehlschlaeger, Matthew A.
dc.contributor.authorDayma, Guillaume
dc.contributor.authorCurran, Henry J.
dc.contributor.authorDagaut, Philippe
dc.identifier.citationSarathy, SM,Javed, T,Karsenty, F,Heufer, A,Wang, W,Park, S,Elwardany, A,Farooq, A,Westbrook, CK,Pitz, WJ,Oehlschlaeger, MA,Dayma, G,Curran, HJ,Dagaut, P (2014) 'A comprehensive combustion chemistry study of 2,5-dimethylhexane'. Combustion And Flame, 161 :1444-1459.en_IE
dc.descriptionJournal articleen_IE
dc.description.abstractIso-paraffinic molecular structures larger than seven carbon atoms in chain length are commonly found in conventional petroleum, Fischer-Tropsch (FT), and other alternative hydrocarbon fuels, but little research has been done on their combustion behavior. Recent studies have focused on either mono-methylated alkanes and/or highly branched compounds (e.g., 2,2,4-trimethylpentane). In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for the oxidation of 2,5-dimethylhexane under a wide variety of temperature, pressure, and equivalence ratio conditions. This new dataset includes jet stirred reactor speciation, shock tube ignition delay, and rapid compression machine ignition delay, which builds upon recently published data for counterflow flame ignition, extinction, and speciation profiles. The low and high temperature oxidation of 2,5-dimethylhexane has been simulated with a comprehensive chemical kinetic model developed using established reaction rate rules. The agreement between the model and data is presented, along with suggestions for improving model predictions. The oxidation behavior of 2,5-dimethylhexane is compared with oxidation of other octane isomers to confirm the effects of branching on low and intermediate temperature fuel reactivity. The model is used to elucidate the structural features and reaction pathways responsible for inhibiting the reactivity of 2,5-dimethylhexane. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.en_IE
dc.description.sponsorshipEuropean Research Council - (FP7/2007-2013)/ERC Grant agreement n° 291049 − 2G-CSafe.en_IE
dc.publisherElsevier ScienceDirecten_IE
dc.relation.ispartofCombustion And Flameen
dc.subjectChemical kinetic modelingen_IE
dc.subjectShock tubeen_IE
dc.subjectJet stirred reactoren_IE
dc.subjectRapid compression machineen_IE
dc.subjectIgnition delayen_IE
dc.subjectBranched hydrocarbonsen_IE
dc.titleA comprehensive combustion chemistry study of 2,5-dimethylhexaneen_IE
dc.local.contactHenry Curran, Dept Of Chemistry, Room 215, Arts/Science Building, Nui Galway. 3856 Email:

Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record