Show simple item record

dc.contributor.authorDonohoe, Nicola
dc.contributor.authorHeufer, Alexander
dc.contributor.authorMetcalfe, Wayne K.
dc.contributor.authorCurran, Henry J.
dc.contributor.authorDavis, Marissa L.
dc.contributor.authorMathieu, Olivier
dc.contributor.authorPlichta, Drew
dc.contributor.authorMorones, Anibal
dc.contributor.authorPetersen, Eric L.
dc.contributor.authorGüthe, Felix
dc.identifier.citationDonohoe, N,Heufer, A,Metcalfe, WK,Curran, HJ,Davis, ML,Mathieu, O,Plichta, D,Morones, A,Petersen, EL,Guthe, F (2014) 'Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures' Combustion and Flame, 161(6), 1432-1443. doi:
dc.description.abstractNew experimental ignition delay time data measured in both a shock tube and in a rapid compression machine were taken to determine the increase in reactivity due to the addition of hydrogen to mixtures of methane and natural gas. Test conditions were determined using a statistical design of experiments approach which allows the experimenter to probe a wide range of variable factors with a comparatively low number of experimental trials. Experiments were performed at 1, 10, and 30 atm in the temperature range 850-1800 K, at equivalence ratios of 0.3, 0.5, and 1.0 and with dilutions ranging from 72% to 90% by volume. Pure methane- and hydrogen-fueled mixtures were prepared in addition to two synthetic 'natural gas'-fueled mixtures comprising methane, ethane, propane, n-butane and n-pentane, one comprising 81.25/10/5/2.511.25% while the other consisted of 62.5/20/10/5/2.5% C-1/C-2/C-3/C-4/Cs components to encompass a wide range of possible natural gas compositions. A heated, constant-volume combustion vessel was also utilized to experimentally determine laminar flame speed for the same baseline range of fuels. In this test, a parametric sweep of equivalence ratio, 0.7-1.3, was conducted at each condition, and the hydrogen content was varied from 50% to 90% by volume. The initial temperature and pressure varied from 300 to 450 K and 1 to 5 atm, respectively. Flame speed experiments conducted above atmospheric pressure utilized a 1:6 oxygen-to-helium ratio to curb the hydrodynamic and thermal instabilities that arise when conducting laminar flame speed experiments. All experiments were simulated using a detailed chemical kinetic model. Overall good agreement is observed between the simulations and the experimental results. A discussion of the important reactions promoting and inhibiting reactivity is included. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.en_IE
dc.description.sponsorshipThis work was supported by Science Foundation Ireland under Grant No. [08/IN1./I2055]. We also acknowledge the support of Alstom Power Ltd. A. Morones was supported by CONANCYT of Mexico and CIDESI, and M. Davis was supported in part by a Graduate Diversity Fellowship from Texas A&M University.en_IE
dc.relation.ispartofCombustion And Flameen
dc.subjectNatural gasen_IE
dc.subjectRapid compression machineen_IE
dc.subjectShock tubeen_IE
dc.subjectFlame speeden_IE
dc.subjectRapid compression machineen_IE
dc.subjectMethane air mixturesen_IE
dc.subjectBurning velocitiesen_IE
dc.subjectHydrogen airen_IE
dc.subjectShock wavesen_IE
dc.subjectFuel blendsen_IE
dc.titleIgnition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressuresen_IE
dc.local.contactHenry Curran, Dept Of Chemistry, Room 215, Arts/Science Building, Nui Galway. 3856 Email:

Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:


This item appears in the following Collection(s)

Show simple item record