Show simple item record

dc.contributor.authorHealy, Mark G.
dc.date.accessioned2016-05-10T14:56:59Z
dc.date.available2016-05-10T14:56:59Z
dc.date.issued2015-10-02
dc.identifier.citationFenton, O., Healy, M.G., Brennan, F.P., Thornton, S.F., Lanigan, G.J., Ibrahim, T.G. (2016) 'Holistic evaluation of field-scale denitrifying bioreactors as a basis to improve environmental quality'. Journal Of Environmental Quality, 45 (3):788-795.en_IE
dc.identifier.issn1537-2537
dc.identifier.urihttp://hdl.handle.net/10379/5764
dc.descriptionJournal articleen_IE
dc.description.abstractDenitrifying bioreactors effectively convert nitrate-nitrogen (NO3-N) to di-nitrogen and thereby protect water quality in agricultural landscapes. In the present study, the performance of a pilot-scale bioreactor (50 m long, 5 m wide and 2 m deep) containing seven alternating cells, filled with either sandy loam soil or lodgepole pine woodchip, and with a novel zig-zag flow pattern, was investigated. The influent water had an average NO3-N concentration of 25 mg L-1. The performance of the bioreactor was evaluated in two scenarios. In scenario 1, only NO3-N removal was evaluated, whereas in scenario 2, NO3-N removal, ammonium-N (NH4-N) and dissolved reactive phosphorus (DRP) generation was considered. These data were used to generate a sustainability index (SI) a number which evaluated the overall performance taking these parameters into account. When the bioreactor performance was evaluated in scenario 1, it was a net reducer of contaminants, but it transformed into a net producer of contaminants in scenario 2. Inquisition of the data using these scenarios meant that an optimum bioreactor design could be identified. This would involve the reduction of the filter length such that it comprised only two cells a single sandy loam soil cell, followed by a woodchip cell, which would remove NO3-N, reduce greenhouse gas (GHG) emissions and DRP losses. An additional post-bed chamber containing media to eliminate NH4-N may be added to this bioreactor. Scenario modelling such as that proposed in this paper, should ideally include GHG in the SI, but as different countries have different emission targets, future work should concentrate on the development of geographically appropriate weightings to facilitate the incorporation of GHG into a SI.en_IE
dc.description.sponsorshipDepartment of Agriculture, Forestry and the 340 Marine (DAFM) Research Stimulus Fund (Project number: RSF 07 525) and the Teagasc 341 Post-Doctoral fund
dc.formatapplication/pdfen_IE
dc.language.isoenen_IE
dc.publisherAssociation of Crop, Soil and Environmental Societies (ACSES)en_IE
dc.relation.ispartofJournal Of Environmental Qualityen
dc.subjectDenitrifying bioreactorsen_IE
dc.subjectAgricultureen_IE
dc.titleHolistic evaluation of field-scale denitrifying bioreactors as a basis to improve environmental quality.en_IE
dc.typeArticleen_IE
dc.date.updated2016-05-10T08:08:11Z
dc.identifier.doi10.2134/jeq2015.10.0500
dc.local.publishedsourcehttp://dx.doi.org/10.2134/jeq2015.10.0500en_IE
dc.description.peer-reviewedpeer-reviewed
dc.contributor.funder|~|1267881|~|
dc.internal.rssid10190262
dc.local.contactMark Healy, Room Eng-1038, Civil Engineering, Col Of Engineering & Informatics, Nui Galway. 5364 Email: mark.healy@nuigalway.ie
dc.local.copyrightcheckedNo
nui.item.downloads78


Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

Thumbnail

This item appears in the following Collection(s)

Show simple item record