Show simple item record

dc.contributor.authorDoyle, Heather
dc.contributor.authorLohfeld, Stefan
dc.contributor.authorMcHugh, Peter E.
dc.date.accessioned2016-02-03T12:25:13Z
dc.date.available2016-02-03T12:25:13Z
dc.date.issued2013
dc.identifier.citationDoyle, H., Lohfeld, S., McHugh, P.E. (2013) 'Predicting the elastic properties of selective laser sintered PCL/b-TCP bone scaffold materials using computational modelling'. Annals Of Biomedical Engineering, 42 (3):661-677.en_IE
dc.identifier.issn1573-9686
dc.identifier.urihttp://hdl.handle.net/10379/5524
dc.description.abstractAbstract This study assesses the ability of finite element (FE) models to capture the mechanical behaviour of sintered orthopaedic scaffold materials. Individual scaffold struts were fabricated from a 50:50 wt% poly-e-caprolactone (PCL)/b-tricalcium phosphate (b-TCP) blend, using selectivelaser sintering. The tensile elastic modulus of single struts was determined experimentally. High resolution FE models of single struts were generated from micro-CT scans (28.8 lmresolution) and an effective strut elastic modulus was calculated from tensile loading simulations. Three material assignment methods were employed: (1) homogeneous PCL elastic constants, (2) composite PCL/b-TCP elastic constants based on rule of mixtures, and (3) heterogeneous distribution of micromechanically-determined elastic constants. In comparisonwith experimental results, the use of homogeneous PCL properties gave a good estimate of strut modulus; however it is not sufficiently representative of the real material as it neglects the b-TCP phase. The rule of mixtures method significantly overestimated strut modulus, while there was no significant difference between strut modulus evaluated using the micromechanically-determined elastic constants and experimentally evaluated strut modulus. These results indicate that the multi-scale approach of linking micromechanical modelling of the sintered scaffold material with macroscale modelling gives an accurate prediction of the mechanical behaviour of the sintered structure.en_IE
dc.formatpdfen_IE
dc.language.isoenen_IE
dc.publisherSpringeren_IE
dc.relation.ispartofAnnals Of Biomedical Engineeringen
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectSelective laser sintering,en_IE
dc.subjectPoly-e-caprolactone,en_IE
dc.subjectb-Tricalcium phosphate,en_IE
dc.subjectMicromechanical modelling,en_IE
dc.subjectBone tissue engineering,en_IE
dc.subjectMechanical properties,en_IE
dc.subjectFinite element analysis.en_IE
dc.titlePredicting the elastic properties of selective laser sintered PCL/b-TCP bone scaffold materials using computational modelling.en_IE
dc.typeArticleen_IE
dc.date.updated2015-11-03T15:05:36Z
dc.identifier.doi10.1007/s10439-013-0913-4
dc.local.publishedsourcehttp://link.springer.com/article/10.1007%2Fs10439-013-0913-4en_IE
dc.description.peer-reviewedpeer-revieweden_IE
dc.contributor.funder|~|6201984|~|en_IE
dc.internal.rssid9136977
dc.local.contactStefan Lohfeld, Mechanical & Biomedical Eng, Engineering Building Eng-1042, Nui Galway. 2963 Email: stefan.lohfeld@nuigalway.ie
dc.local.copyrightcheckedYes
dc.local.versionACCEPTED
nui.item.downloads560


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland