SemStim at the Linked Open Data-enabled Recommender Systems 2014 challenge
dc.contributor.author | Heitmann, Benjamin | |
dc.contributor.author | Hayes, Conor | |
dc.date.accessioned | 2015-02-03T15:45:07Z | |
dc.date.available | 2015-02-03T15:45:07Z | |
dc.date.issued | 2014-10-14 | |
dc.identifier.citation | Presutti, V., Stankovic, M., Cambria, E., Cantador, I. n., Di Iorio, A., Di Noia, T., et al. SemStim at the LOD-RecSys 2014 Challenge Semantic Web Evaluation Challenge (Vol. 475, pp. 170-175): Springer International Publishing. | en_US |
dc.identifier.isbn | 978-3-319-12023-2 | |
dc.identifier.uri | http://hdl.handle.net/10379/4843 | |
dc.description | Conference paper / Book chapter | en_US |
dc.description.abstract | SemStim is a graph-based recommendation algorithm which is based on Spreading Activation and adds targeted activation and duration constraints. SemStim is not affected by data sparsity, the cold-start problem or data quality issues beyond the linking of items to DBpedia. The overall results show that the performance of SemStim for the diversity task of the challenge is comparable to the other participants, as it took 3rd place out of 12 participants with 0.0413 F1@20 and 0.476 ILD@20. In addition, as SemStim has been designed for the requirements of cross-domain rec- ommendations with different target and source domains, this shows that SemStim can also provide competitive single-domain recommendations. | en_US |
dc.description.sponsorship | Science Foundation Ireland - SFI/12/RC/2289 and SFI/08/SRC/I1407 | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Extended Semantic Web Conference | en |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Ireland | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/ie/ | |
dc.subject | Recommender system | en_US |
dc.subject | Linked Data | en_US |
dc.subject | Semantic Web | en_US |
dc.subject | Cross-domain | en_US |
dc.title | SemStim at the Linked Open Data-enabled Recommender Systems 2014 challenge | en_US |
dc.type | Conference Paper | en_US |
dc.date.updated | 2015-01-22T18:12:13Z | |
dc.local.publishedsource | http://dx.doi.org/10.1007/978-3-319-12024-9_22 | en_US |
dc.description.peer-reviewed | peer-reviewed | |
dc.contributor.funder | |~|SFI|~| | |
dc.internal.rssid | 8190766 | |
dc.local.contact | Ioana Rodica Hulpus, Insight, Nui Galway. Email: ioanarodica.hulpus@nuigalway.ie | |
dc.local.copyrightchecked | Yes | |
dc.local.version | ACCEPTED | |
nui.item.downloads | 551 |