Show simple item record

dc.contributor.advisorMcHugh, Peter
dc.contributor.authorDoyle, Heather
dc.date.accessioned2015-01-23T12:44:05Z
dc.date.available2015-01-23T12:44:05Z
dc.date.issued2014-09-30
dc.identifier.urihttp://hdl.handle.net/10379/4829
dc.description.abstractThe load-bearing ability of orthopaedic scaffolds in critical-sized defects is of critical importance. 3D printing methods such as selective laser sintering (SLS) have great potential for the fabrication of patient-specific scaffolds. The incorporation of ceramic particles is desirable to promote osteogenesis; however the influence of these particles on the microstructure and mechanical behaviour of SLS materials is unclear. A multiscale modelling methodology is developed to predict the macroscale elastic properties of polymer-ceramic SLS materials with complex microstructures. The relationship between micromechanics-evaluated elastic properties and average grey-value is found to be material-specific. The macroscale elastic modulus of SLS materials with different volumes of beta-TCP particles is accurately predicted when element-specific assignment of elastic properties based on grey-value is used. Increasing the ceramic content of these SLS materials is shown to result in a slight increase in stiffness but significant reductions in strength. Changes in mechanical properties under simulated physiological degradation conditions are evaluated, and are shown to be dependent on the incorporation of ceramic particles. Computational models of critical-sized ovine tibial defects with implanted scaffolds are generated. The ability of each defect to withstand bending and compressive loading is analysed, demonstrating the influence of callus volume and of both scaffold volume and stiffness on defect load-bearing. Clinically-used metrics for the prediction of the safety of removing external fixation are evaluated for each defect and deficiencies in these measurements are demonstrated by comparison with simulation results. In conclusion, the use of both mechanical testing methods and computational modelling in this thesis has led to an improved understanding of the influence of ceramic content on mechanical properties as well as the development of a multiscale modelling methodology to prediction macroscale mechanical properties. Computational modelling of real defect geometries has resulted in a non-invasive method to assess defect stability and load-bearing capacity.en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectOrthopedic scaffolden_US
dc.subjectFinite elementen_US
dc.subjectMechanical testingen_US
dc.subjectSelective laser sinteringen_US
dc.subjectPolymeren_US
dc.subjectCeramicen_US
dc.subjectBiomedical Engineeringen_US
dc.titleComputational and experimental analysis of the mechanical performance of SLS generated polymer-ceramic bone scaffold materialsen_US
dc.typeThesisen_US
dc.contributor.funderIrish Research Councilen_US
dc.local.noteIn this thesis, the mechanical properties of an orthopedic scaffold fabricated using selective laser sintering (a 3D printing method) are evaluated using mechanical testing and finite element modelling (FEM). The mechanical stability of this type of scaffold in a large bone defect are evaluated using FEM.en_US
dc.local.finalYesen_US
nui.item.downloads583


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland