Show simple item record

dc.contributor.advisorPandit, Abhay
dc.contributor.authorDaly, William
dc.description.abstractPeripheral nerve injuries are a major clinical problem which currently affect over one million people worldwide. Transection injuries caused by workplace and home injuries, road traffic accidents and by intentional harm lead to debilitating and painful injuries for those afflicted. Treatments are limited and largely ineffective. The patient's own donor nerve (autograft) is the gold standard for repair but this treatment is largely unsuccessful, suffering from limited supply with donor site morbidity and pain. The use of hollow nerve guidance conduits (NGCs) is the current clinically approved alternative. However these have shown limited applicability in the clinic. Thus, the objective of this thesis was to improve and understand the use of these hollow NGCs and attempt to improve functional nerve regeneration using the concept of intraluminal guidance. Intraluminal guidance involves the incorporation of biomaterial structures (in this instance extruded collagen fibres) to replace the natural fibrin cable which forms during repair and guide regenerating axons to their distal targets. An intraluminal collagen fibre conduit was tested across both a non-critical (10 mm) and critical nerve gap (15 mm) in a rat sciatic nerve model for its ability to promote repair. Through sequential studies, it was shown that the incorporation of intraluminal structure reduced the misdirection of regenerating axons during repair and also achieved functional regeneration in a number of parameters similar to that of the gold standard. Additionally, the intraluminal fibre conduit demonstrated the ability to regenerate across, the aforementioned, critical nerve gap (a nerve gap where regeneration is minimal if not absent). Based on these results, a further understanding of the early molecular mechanisms resulting in these beneficial effects was warranted. Using proteomics analysis the effect of the biomaterial used, the incorporation of intraluminal structure and the influence of increasing gap distance were documented. From this understanding, the key molecular components governing the increased nerve regeneration seen in the intraluminal fibre conduit and the robust regeneration seen within autograft were revealed. Based on the conclusions of this study, an intraluminal fibre conduit or a hollow biomaterial conduit may be further functionalised to match the molecular profile of the gold standard for repair.en_US
dc.subjectPeripheral nerve regenerationen_US
dc.subjectSciatic nerveen_US
dc.subjectTissue engineeringen_US
dc.subjectNetwork of Excellence for Functional Biomaterialsen_US
dc.titleA biomaterials approach to peripheral nerve repairen_US
dc.contributor.funderScience Foundation Irelanden_US
dc.local.noteThe peripheral nervous system is able to heal itself over short biological distances. For larger distances, surgical intervention is required. Current treatments using the patients own tissue or hollow nerve guidance tubes fail to address this problem. This study, initially, focuses on addressing this problem using a biomaterials based nerve guidance conduit filled with a biological scaffold, and later seeks to understand the regenerative response by looking at the changes in proteins which occur as a result of the treatment. From this understanding future therapies can be realised.en_US

Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:


This item appears in the following Collection(s)

Show simple item record