Show simple item record

dc.contributor.authorRyder, Alan G.
dc.contributor.authorSzczupak, Boguslaw
dc.contributor.authorTogashi, Denisio M.
dc.contributor.authorCalvet, Amandine
dc.contributor.authorO'Loughlin, Muireann
dc.identifier.citationTogashi, DM,Szczupak, B,Ryder, AG,Calvet, A,O'Loughlin, M (2009) 'Investigating Tryptophan Quenching of Fluorescein Fluorescence under Protolytic Equilibrium'. Journal Of Physical Chemistry A, 113 :2757-2767.en_US
dc.description.abstractFluorescein is one of most used fluorescent labels for characterizing biological systems, such as proteins, and is used in fluorescence microscopy. However, if fluorescein is to be used for quantitative measurements involving proteins then one Must account for the fact that the fluorescence of fluorescein-labeled protein can be affected by the presence of intrinsic amino acids residues, such as tryptophan (Trp). There is a lack of quantitative information to explain in detail the specific processes that are involved, and this makes it difficult to evaluate quantitatively the photophysics of fluorescein-labeled proteins. To address this, we have explored the fluorescence of fluorescein in buffered solutions, in different acidic and basic conditions, and at varied concentrations of tryptophan derivatives, using steady-state absorption and fluorescence spectroscopy, combined with fluorescence lifetime measurements. Stern-Volmer analyses show the presence of static and dynamic quenching processes between fluorescein and tryptophan derivatives. Nonfluorescent complexes with low association constants (5.0-24.1 M-1) are observed at all pH values studied. At low pH values, however, an additional static quenching contribution by a sphere-of-action (SOA) mechanism was found. The possibility of a proton transfer mechanism being involved in the SOA static quenching, at low pH, is discussed based on the presence of the different fluorescein prototropic species. For the dynamic quenching process, the bimolecular rate constants obtained (2.5-5.3 x 10(9) M(-1)s(-1)) were close to the Debye-Smoluchowski diffusion rate constants. In the encounter controlled reaction mechanism, a photoinduced electron transfer process was applied using the reduction potentials and charges of the fluorophore and quencher, in addition to the ionic strength of the environment. The electron transfer rate constants (2.3-6.7 x 10(9) s(-1)) and the electronic coupling values (5.7-25.1 cm (1)) for fluorescein fluorescence quenching by tryptophan derivatives in the encounter complex were then obtained and analyzed.en_US
dc.relation.ispartofJournal Of Physical Chemistry Aen
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.subjectPhotoinduced electron-transferen_US
dc.subjectBovine serum-albuminen_US
dc.subjectRate constantsen_US
dc.titleInvestigating tryptophan quenching of fluorescein fluorescence under protolytic equilibriumen_US
dc.local.publisherstatement"Reprinted (adapted) with permission from Investigating trypthopan quenching of fluorescein fluorescence under protolytic equilibrium. D.M. Togashi, B. Szczupak, A.G. Ryder, A. Calvet, and M. O¿Loughlin, Journal of Physical Chemistry A, 113(12), 2757-2767, (2009). Copyright 2009 American Chemical Society."en_US
dc.local.contactAlan Ryder, School Of Chemistry, Room 228, Arts/Science Building, Nui Galway. 2943 Email:

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland