Show simple item record

dc.contributor.authorRahm, Alexander D.
dc.date.accessioned2013-11-22T10:26:44Z
dc.date.available2013-11-22T10:26:44Z
dc.date.issued2011
dc.identifier.citationRahm, Alexander D. (2011) 'Homology and K-theory of the Bianchi groups'. C. R. Math. Acad. Sci. Paris, 349 (11-12):615-619.en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.crma.2011.05.014
dc.identifier.urihttp://hdl.handle.net/10379/3834
dc.description.abstractWe reveal a correspondence between the homological torsion of the Bianchi groups and new geometric invariants, which are effectively computable thanks to their action on hyperbolic space. We use it to explicitly compute their integral group homology and equivariant K-homology. By the Baum/Connes conjecture, which holds for the Bianchi groups, we obtain the K-theory of their reduced C*-algebras in terms of isomorphic images of the computed K-homology. We further find an application to Chen/Ruan orbifold cohomology.en_US
dc.formatapplication/pdfen_US
dc.language.isoenen_US
dc.relation.ispartofC. R. Math. Acad. Sci. Parisen
dc.subjectK-homologyen_US
dc.subjectBianchi groupsen_US
dc.subjectK-theoryen_US
dc.titleHomology and K-theory of the Bianchi groupsen_US
dc.typeArticleen_US
dc.date.updated2013-10-10T11:33:28Z
dc.identifier.doi10.1016/j.crma.2011.05.014
dc.local.publishedsourcehttp://dx.doi.org/10.1016/j.crma.2011.05.014en_US
dc.description.peer-reviewedpeer-reviewed
dc.contributor.funder|~|
dc.internal.rssid5076486
dc.local.contactAlexander Rahm, School Of Maths, Stats &, Applied Maths,, Nui Galway.. Email: alexander.rahm@nuigalway.ie
dc.local.copyrightcheckedYes
dc.local.versionACCEPTED
nui.item.downloads309


Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

Thumbnail

This item appears in the following Collection(s)

Show simple item record