Show simple item record

dc.contributor.authorHealy, Mark G.
dc.contributor.authorIbrahim, Tristan
dc.contributor.authorLanigan, Gary
dc.contributor.authorSerrenho, Ana
dc.contributor.authorFenton, Owen
dc.identifier.citationHealy, M.G., Ibrahim, T.G., Lanigan, G., Serrenho, A., Fenton, O. 2012. Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors. Ecological Engineering 40: 198-209.en_US
dc.description.abstractLaboratory denitrifying bioreactors, which use an organic carbon (C) rich media to enhance microbial reduction of nitrate (NO3-) to nitrogen (N) gases, are used worldwide to protect surface and groundwater. To highlight potential adverse effects of denitrifying bioreactors, nitrate removal rates (g NO3-N m-3 d-1 removed), nitrate removal efficiencies (% removed minus production of other N species) and release of greenhouse gases and solutes (ammonium, phosphorus (P) and organic carbon (C)) were compared in this study using different media: lodgepole pine woodchips (LPW), cardboard, lodgepole pine needles (LPN), barley straw (BBS) and a soil control. Results showed that nitrate removals were consistently >99% for all media for initial leaching and steady-state periods. When pollution swapping was considered, this ranged from 67% for LPW to 95% for cardboard. Sustained P releases over the threshold for the occurrence of eutrophication were measured in all media. Greenhouse gas emissions were dominated by carbon dioxide (CO2) and methane (CH4) fluxes with little nitrous oxide (N2O) release due to the anaerobic conditions prevalent within the bioreactors. Comparisons of different media, under steady-state conditions, showed that C fluxes were highest for cardboard and BBS bioreactors. Carbon fluxes from cardboard bioreactors ranged from 11.6 g C m-2 d-1 to 13.9 g C m-2 d-1, while BBS emissions ranged from 3.9 g C m-2 d-1 to 4.4 g C m-2 d-1. These C emissions were correlated with the total surface area exposed within the media. Such investigations highlight the need to consider pollution swapping during the initial leaching period and should improve design criteria for field-scale bioreactors used to mitigate shallow groundwater NO3 -.en_US
dc.publisherEcological Engineeringen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.subjectCivil Engineeringen_US
dc.subjectDenitrification bioreactorsen_US
dc.subjectGroundwater nitrateen_US
dc.titleNitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors.en_US
dc.contributor.funderDepartment of Agriculture, Fisheries and Fooden_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland