dc.contributor.author | Liu, Yang | en |
dc.contributor.author | Madden, Michael G. | en |
dc.date.accessioned | 2009-05-22T10:54:21Z | en |
dc.date.available | 2009-05-22T10:54:21Z | en |
dc.date.issued | 2007 | en |
dc.identifier.citation | One-Class Support Vector Machine Calibration Using Particle Swarm Optimisation , Yang Liu and Michael G. Madden. Proceedings of AICS-2007: 18th Irish Conference on Artificial Intelligence and Cognitive Science, Dublin, August 2007. | en |
dc.identifier.uri | http://hdl.handle.net/10379/204 | en |
dc.description.abstract | Abstract. Population-based search methods such as evolutionary algorithms, shuffled complex algorithms, simulated annealing and ant colony search are increasingly used as automatic calibration methods for a wide range of numerical models. This paper proposes the use of particle swarm optimisation to calibrate the parameters a one-class support vector machine. This approach is developed and tested in the calibration of a one-class SVM, applied to several data sets. The results indicate that the proposed method is able to match or surpass the performance of a one-class SVM with parameters optimized using a standard grid search method, with much lower CPU time required. | en |
dc.format | application/pdf | en |
dc.language.iso | en | en |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Ireland | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/ie/ | |
dc.subject | Algorithms | en |
dc.subject | Support vector machines | en |
dc.subject.lcsh | Algorithms | en |
dc.subject.lcsh | Support vector machines | en |
dc.title | One-Class Support Vector Machine Calibration Using Particle Swarm Optimisation | en |
dc.type | Conference Paper | en |
nui.item.downloads | 810 | |