Show simple item record

dc.contributor.advisorO'Riordan, Colm
dc.contributor.advisorGriffith, Josephine
dc.contributor.authorHolland, Jane
dc.date.accessioned2020-02-14T09:01:27Z
dc.date.available2020-02-14T09:01:27Z
dc.date.issued2019-12-09
dc.identifier.urihttp://hdl.handle.net/10379/15782
dc.description.abstractEvolutionary swarm robotics uses evolutionary computational techniques to synthesise behaviours for a group of autonomous robots. In a swarm of robots, the collective behaviour of the robots results from the local interactions between robots and interactions between robots and their environment. The design of such system aims to exhibit the same characteristics as simple biological systems: simplicity, robustness, flexibility, and modularity. This thesis presents research on the evolution of individual behaviours in simulated mobile robots using genetic algorithms that collectively exhibit robustness. To explore these characteristics, the evolved behaviours are not only examined in changing environments, but also in models with a varying degree of abstraction. These models include an abstract model (2D, noise free environment), a realistic model (3D, noisy environment, takes physics laws into account), and a real-world model. The behaviours evolved in simulation are then transferred onto robots in the real-world in order to analyse the reality gap, a common problem in evolutionary swarm robotics. A number of experiments are carried out in order to measure the robustness of the system. The first examines the feasibility of evolving behaviours on simulated robots with limited capabilities and the effect of noise on these behaviours. The second experiment set inspects the reality gap between the abstract (2D) and realistic (3D) simulators as well as the effect of noise in different environments. The last experiment set investigates the reality gap between the realistic simulation and the real-world model.en_IE
dc.publisherNUI Galway
dc.subjectGenetic Algorithmsen_IE
dc.subjectKilobotsen_IE
dc.subjectEvolutionary Swarm Roboticsen_IE
dc.subjectEvolutionary Computationen_IE
dc.subjectReality Gapen_IE
dc.subjectComputer scienceen_IE
dc.subjectEngineering and Informaticsen_IE
dc.subjectInformation technologyen_IE
dc.titleThe evolution of behaviours in swarms of robotsen_IE
dc.typeThesisen
dc.contributor.funderHigher Education Authorityen_IE
dc.local.noteThis thesis presents research on the evolution of individual behaviours in simulated mobile robots using genetic algorithms that collectively exhibit robustness and flexibility. The evolved behaviours are examined in changing environments, and in models with a varying degree of abstraction. These behaviours are then transferred onto robots in the real-world in order to analyse the reality gap, a common problem in evolutionary swarm robotics.en_IE
dc.local.finalYesen_IE
nui.item.downloads80


Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

Thumbnail

This item appears in the following Collection(s)

Show simple item record