Show simple item record

dc.contributor.authorMac Ardghail, Padraig
dc.contributor.authorHarrison, Noel M.
dc.contributor.authorLeen, Sean B.
dc.date.accessioned2019-11-29T14:18:13Z
dc.date.issued2018-02-11
dc.identifier.citationMac Ardghail, P., Harrison, N., & Leen, S. B. (2018). A through-process, thermomechanical model for predicting welding-induced microstructure evolution and post-weld high-temperature fatigue response. International Journal of Fatigue, 112, 216-232. doi: https://doi.org/10.1016/j.ijfatigue.2018.02.015en_IE
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10379/15596
dc.description.abstractThis paper is concerned with the development of a modelling framework to predict the effects of welding and post-weld heat treatment on thereto-mechanical performance of welded material, as a step towards a design tool for industry. A dislocation mechanics, through-process finite element model, incorporating thermal, micro structural and mechanical effects is presented, for predicting thereto-mechanical fatigue of welds. The model is applied to multi-pass gas tungsten arc welding of 9Cr martensitic steel. The predicted high-temperature low cycle fatigue performance of cross-weld samples is comparatively assessed for a range of different post-weld heat treatment durations. It is shown that longer post-weld heat-treatment (PWHT) durations increase the predicted number of cycles to failure and that Vickers hardness gradient across the heat-affected zone can be used as an indicator of fatigue life.en_IE
dc.description.sponsorshipThis research is funded by Science Foundation Ireland grant number SFI/14/IA/2604. The authors would like to acknowledge the contributors to this research; NUI Galway, the Ryan Institute, General Electric (UK), ESB International, University of Limerick, Imperial College, London and Fraunhofer IWM, Freiburg.en_IE
dc.formatapplication/pdfen_IE
dc.language.isoenen_IE
dc.publisherElsevieren_IE
dc.relation.ispartofInternational Journal Of Fatigueen
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectFinite-elementen_IE
dc.subjectWeldingen_IE
dc.subjectFatigueen_IE
dc.subjectMicrostructureen_IE
dc.subjectConstitutiveen_IE
dc.subjectPOWER-PLANT STEELSen_IE
dc.subjectRESIDUAL-STRESSen_IE
dc.subjectIV FRACTUREen_IE
dc.subjectSIMULATIONen_IE
dc.subjectSUPPRESSIONen_IE
dc.subjectJOINTSen_IE
dc.subjectFIELDen_IE
dc.subjectPIPEen_IE
dc.titleA through-process, thermomechanical model for predicting welding-induced microstructure evolution and post-weld high-temperature fatigue responseen_IE
dc.typeArticleen_IE
dc.date.updated2019-11-26T17:22:55Z
dc.identifier.doi10.1016/j.ijfatigue.2018.02.015
dc.local.publishedsourcehttps://doi.org/10.1016/j.ijfatigue.2018.02.015en_IE
dc.description.peer-reviewedpeer-reviewed
dc.contributor.funderScience Foundation Irelanden_IE
dc.description.embargo2020-02-11
dc.internal.rssid14548916
dc.local.contactSean Leen, Mechanical & Biomedical Eng, Eng-2051, New Engineering Building, Nui Galway. 5955 Email: sean.leen@nuigalway.ie
dc.local.copyrightcheckedYes
dc.local.versionACCEPTED
dcterms.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2604/IE/Multi-scale, Through-process Chracterisation for Innovative Manufacture of Next-generation Welded Connections (MECHANNICS)/en_IE
nui.item.downloads463


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland