Using polarized Total Synchronous Fluorescence Spectroscopy (pTSFS) with PARAFAC analysis for characterizing intrinsic protein emission
Date
2019-10-15Embargo Date
2021-10-15
Author
Steiner-Browne, Marina
Elcoroaristizabal, Saioa
Ryder, Alan G.
Metadata
Show full item recordUsage
This item's downloads: 1 (view details)
Recommended Citation
Steiner-Browne, Marina, Elcoroaristizabal, Saioa, & Ryder, Alan G. (2019). Using polarized Total Synchronous Fluorescence Spectroscopy (pTSFS) with PARAFAC analysis for characterizing intrinsic protein emission. Chemometrics and Intelligent Laboratory Systems, 194, 103871. doi: 10.1016/j.chemolab.2019.103871
Published Version
Abstract
Using polarized Excitation Emission Matrix (pEEM) spectroscopy to measure the intrinsic emission of proteins offers a potentially useful methodology for a wide variety of potential applications. However, the presence of Rayleigh light scatter causes significant problems when attempting to use Parallel Factor (PARAFAC) and for anisotropy calculations. The use of polarized Total Synchronous Fluorescence Spectroscopy (pTSFS) can minimize
Rayleigh scatter and avoid the use of complex data correction methods. Here, we investigated for the first time the use of pTSFS and PARAFAC to analyze the intrinsic emission of an Immunoglobulin (IgG) type protein in its native
state. To enable PARAFAC analysis however, TSFS data (which is not trilinear) must first be transformed into an EEM like layout (t-EEM) and this generated a region with no experimentally acquired information (92% of the explained variance, and a much weaker, mostly Tyr related emission
with ~3% of the explained variance. The recovery of this Tyr component was only possible because pTSFS
measurements were less contaminated by Rayleigh scattering. Changes in Tyr-to-Trp energy transfer rates caused
by thermal motion were detected as an increase in Tyr contribution, which could not be resolved with the
equivalent pEEM measurements due to light scatter contamination. The increased selectivity, sensitivity, and
reproducibility of pTSFS measurements shows that this is a better option than pEEM for fluorescence emission based monitoring of protein structural change or lot-to-lot variance of IgG type proteins.
Collections
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.
The following license files are associated with this item: