Impact of light intensities and low temperature on the composition and diurnal use of transient carbon stores in barley (Hordeum vulgare)

View/ Open
Date
2019-10-18Author
Ambrosio Barros, Kallyne
Metadata
Show full item recordUsage
This item's downloads: 1 (view details)
Abstract
The carbon partitioning and accumulation are critical for biomass formation in
plants and can be affected by environmental changes and regulated by circadian clock.
Thus, in this study, barley was grown under three light intensities and under three
temperature regimes to evaluate growth, photosynthesis and carbon metabolism. We
also established a high throughput enzymatic protocol that allows determination of
fructans and glucose, fructose and sucrose from small tissue samples. Barley
photosynthesis and carbon compounds accumulation increase accordingly to
increments of light intensity, mainly in blades. Surprisingly, malate is accumulated in
high quantities and is the major pool of carbon in barley, especially under low light,
when sucrose accumulation is lower. Turnover rates of metabolites were very similar
between light intensities and the participation of circadian clock on the regulation was
investigated. Introgression lines with mutation in the ELF3, an element of the
circadian core clock, presented increased content of hexoses and lower starch content
at end of day with similar turnover rates to wild-type. Impaired elf3 function did not
lead to inhibition of growth in barley, which might be explained by the low
contribution of starch and hexoses to the pool of C used at night. Growth in barley is
dependent of sucrose and malate levels, which are not under strong influence of elf3.
Plants grown under cold condition presented inhibition of photosynthesis and growth.
Surprisingly, they also presented inhibition of starch accumulation during the day
under cold nights. However, mobilization rates of starch were similar in warm days
and nights. Malate and sucrose compose the majority of the carbon pool available for
the night growth in all temperature regimes, accumulating in blades under cold days.
Although fructan accumulation was expected under cold, it was negligible for all
tissues. The growth in barley is impaired under cold nights, even though there is
carbon available for use at night. Hence, the data suggests that barley growth
machinery is sensitive to cold night, leading to a negative feedback on photosynthesis,
starch accumulation, and sucrose and malate mobilization at night. Glucose, starch
and sucrose accumulation was reduced in elf3 mutants grown under cold nights,
suggesting a clock control on the synthesis of these compounds, despite the absence
of an effect of ELF3 mutation on growth and photosynthesis. Thus, further
investigation targeting other clock components would clarify the extent of the growth
regulation and carbon partitioning in sucrose accumulating plants, as well as the
growth response to cold.