Multiphase numerical modelling of hydraulic structures with rapidly rotating flows: Stormwater vortex hydrodynamic separator
Date
2018-05-15Author
Mullligan, Sean
McDermott, Dermot
Clifford, Eoghan
Metadata
Show full item recordUsage
This item's downloads: 98 (view details)
Cited 0 times in Scopus (view citations)
Recommended Citation
Mullligan, Sean, McDermott, Dermot, & Clifford, Eoghan. (2018). Multiphase numerical modelling of hydraulic structures with rapidly rotating flows: Stormwater vortex hydrodynamic separator. Paper presented at the ISHS 2018 7th International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May.
Published Version
Abstract
Hydraulic structures exhibiting strongly rotating flows are widely applied in the field of urban and wastewater
hydraulics. Given demographic, urban development and climate change challenge, such infrastructure will require significant
design innovation. Computational fluid dynamics (CFD) is increasingly an effective and widely used tool to evaluate and optimise
new designs and determine performance efficiency for such structures. In this study, a full-scale prototype of a hydrodynamic
vortex grit interceptor for stormwater conveyance systems (the BMS Stormbreaker Defender) was investigated using experimental
and numerical methods. The prototype was evaluated physically in a full-scale test rig permitting flows of up to 30 l/s. Threedimensional velocity distributions were obtained along radial profiles using acoustic Doppler velocimetry (ADV). The threedimensional flow field in the chamber was also modelled using the ANSYS CFX software with a multiphase homogeneous EulerianEulerian approach. In particular, the effectiveness of two-phase flow modelling using the shear stress transport (SST) model with
curvature correction was analysed. Good qualitative and quantitative agreements were found between the numerical solutions and
the experimental data sets for the four flow scenarios investigated. The results of the CFD evaluation/validation, the practicality
of obtained data, and the implications for the design of such a structure are discussed.