Show simple item record

dc.contributor.authorNzeteu, Corine Orline
dc.contributor.authorTrego, Anna Christine
dc.contributor.authorAbram, Florence
dc.contributor.authorO’Flaherty, Vincent
dc.date.accessioned2019-08-28T12:37:16Z
dc.date.available2019-08-28T12:37:16Z
dc.date.issued2018-03-11
dc.identifier.citationNzeteu, Corine Orline, Trego, Anna Christine, Abram, Florence, & O’Flaherty, Vincent. (2018). Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnology for Biofuels, 11(1), 108. doi: 10.1186/s13068-018-1101-4en_IE
dc.identifier.issn1754-6834
dc.identifier.urihttp://hdl.handle.net/10379/15356
dc.description.abstractBackground: Nowadays, the vast majority of chemicals are either synthesised from fossil fuels or are extracted from agricultural commodities. However, these production approaches are not environmentally and economically sustainable, as they result in the emission of greenhouse gases and they may also compete with food production. Because of the global agreement to reduce greenhouse gas emissions, there is an urgent interest in developing alternative sustainable sources of chemicals. In recent years, organic waste streams have been investigated as attractive and sustainable feedstock alternatives. In particular, attention has recently focused on the production of caproate from mixed culture fermentation of low-grade organic residues. The current approaches for caproate synthesis from organic waste are not economically attractive, as they involve the use of two-stage anaerobic digestion systems and the supplementation of external electron donors, both of which increase its production costs. This study investigates the feasibility of producing caproate from food waste (FW) without the supplementation of external electron donors using a single-phase reactor system.& para;& para;Results: Replicate leach-bed reactors were operated on a semi-continuous mode at organic loading of 80 g VS FW l(-1) and at solid retention times of 14 and 7 days. Fermentation, rather than hydrolysis, was the limiting step for caproate production. A higher caproate production yield 21.86 +/- 0.57 g COD l(-1) was achieved by diluting the inoculating leachate at the beginning of each run and by applying a leachate recirculation regime. The mixed culture batch fermentation of the FW leachate was able to generate 23 g caproate COD l(-1) (10 g caproate l(-1)), at a maximum rate of 3 g caproate l(-1) day(-1) under high H-2 pressure. Lactate served as the electron donor and carbon source for the synthesis of caproate. Microbial community analysis suggested that neither Clostridium kluyveri nor Megasphaera elsdenii, which are well-characterised caproate producers in bioreactors systems, were strongly implicated in the synthesis of caproate, but that rather Clostridium sp. with 99% similarity to Ruminococcaceae bacterium CPB6 and Clostridium sp. MT1 likely played key roles in the synthesis of caproate. This finding indicates that the microbial community capable of caproate synthesis could be diverse and may therefore help in maintaining a stable and robust process.& para;& para;Conclusions: These results indicate that future, full-scale, high-rate caproate production from carbohydrate-rich wastes, associated with biogas recovery, could be envisaged.en_IE
dc.formatapplication/pdfen_IE
dc.language.isoenen_IE
dc.publisherBMC (part of Springer Nature)en_IE
dc.relation.ispartofBiotechnology For Biofuelsen
dc.subjectFood wasteen_IE
dc.subjectLeach-bed reactoren_IE
dc.subjectCaproateen_IE
dc.subjectHydrolysisen_IE
dc.subjectFermentationen_IE
dc.subjectClostridium sp.en_IE
dc.subjectElectron donorsen_IE
dc.subjectMUNICIPAL SOLID-WASTEen_IE
dc.subjectMIXED CULTURE FERMENTATIONen_IE
dc.subjectMEDIUM-CHAIN CARBOXYLATESen_IE
dc.subjectFATTY-ACID PRODUCTIONen_IE
dc.subjectLEACH BED REACTORen_IE
dc.subjectEUBACTERIUM-PYRUVATIVORANSen_IE
dc.subjectCLOSTRIDIUM-KLUYVERIen_IE
dc.subjectCARBON-DIOXIDEen_IE
dc.subjectHEXANOIC ACIDen_IE
dc.subjectN-CAPROATEen_IE
dc.titleReproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor systemen_IE
dc.typeArticleen_IE
dc.date.updated2019-08-01T12:34:20Z
dc.identifier.doi10.1186/s13068-018-1101-4
dc.local.publishedsourcehttps://doi.org/10.1186/s13068-018-1101-4en_IE
dc.description.peer-reviewedpeer-reviewed
dc.internal.rssid14266376
dc.local.contactVincent O'Flaherty, Dept. Of Microbiology & Eci, Arts/Science Building, Nui Galway. 3734 Email: vincent.oflaherty@nuigalway.ie
dc.local.copyrightcheckedYes
dc.local.versionPUBLISHED
nui.item.downloads47


Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

Thumbnail

This item appears in the following Collection(s)

Show simple item record