Show simple item record

dc.contributor.authorUí Chúláin, Caitríona
dc.contributor.authorHarte, Annette M.
dc.date.accessioned2019-03-21T13:35:37Z
dc.date.available2019-03-21T13:35:37Z
dc.date.issued2018-08-29
dc.identifier.citationUí Chúláin, Caitríona, & Harte, Annette M. (2018). Experimental investigation of the serviceability behaviour of a cross laminated timber floor. Paper presented at the Civil Engineering Research in Ireland 2018 (CERI2018), Dublin, Ireland, 29-30 August, doi:10.13025/S8GH00en_IE
dc.identifier.urihttp://hdl.handle.net/10379/15038
dc.description.abstractEuropean timber design standards set out basic serviceability limit design criteria for single span, simply supported floors, but the rotational stiffness of the fixing system and two-way support possible with modern solid timber floors can significantly influence deflection and vibration response. In addition, the added mass due to the use of non-structural floor screeds has an impact on the dynamic behaviour. The objective of this research was to investigate the influence of modern timber fixing systems and added mass on the serviceability behaviour of cross-laminated timber (CLT) floors. This paper outlines experimental research on a laboratory-scale, CLT floor using alternative arrangements of self-tapping screws and brackets, simulating common CLT platform construction details. Both one and two-way span conditions were considered. The influence of added mass was also measured. Non-destructive tests were carried out in accordance with European Standard prEN 16929 guidelines, which included measuring the static serviceability deflection due to a 1kN load applied at midspan and the floors natural frequencies and mode shapes between 0-80Hz. The study found varying degrees of influence on the serviceability response of the floor depending on orientation, imposed load, fixing type and spacing. In the case of single span platform construction using only self-tapping screws, the screw spacing had negligible influence on the fundamental frequency. The addition of support brackets increased the fundamental frequency up to 6%, with 11% reduction in the static point load deflection. Introducing added mass reduced the fundamental frequency by over 25%.en_IE
dc.description.sponsorshipThe first author wishes to acknowledge the financial support of the College of Engineering and Informatics, The National University of Ireland Galway, Enterprise Ireland, SDR Group, Ashbourne, Co. Meath, and KLH UK & KLH Massivholz GmbHen_IE
dc.formatapplication/pdfen_IE
dc.language.isoenen_IE
dc.publisherNUI Galwayen_IE
dc.relation.ispartofCivil Engineering Research in Ireland, CERI 2018en
dc.subjectCross-laminated timberen_IE
dc.subjecttimber floorsen_IE
dc.subjectserviceability limit designen_IE
dc.titleExperimental investigation of the serviceability behaviour of a cross laminated timber flooren_IE
dc.typeConference Paperen_IE
dc.date.updated2019-03-19T20:59:42Z
dc.identifier.doi10.13025/S8GH00
dc.local.publishedsourcehttps://doi.org/10.13025/S8GH00
dc.description.peer-reviewedpeer-reviewed
dc.contributor.funderCollege of Engineering and Informatics, National University of Ireland, Galwayen_IE
dc.contributor.funderEnterprise Irelanden_IE
dc.contributor.funderSDR Group, Ashbourne, Co. Meathen_IE
dc.contributor.funderKLH UKen_IE
dc.contributor.funderKLH Massivholz GmbHen_IE
dc.internal.rssid15537304
dc.local.contactAnnette M. Harte, Dept. Of Civil Engineering, Civil Engineering Building, Nui Galway. 2732 Email: annette.harte@nuigalway.ie
dc.local.copyrightcheckedYes
dc.local.versionACCEPTED
nui.item.downloads20


Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:

Thumbnail

This item appears in the following Collection(s)

Show simple item record