dc.contributor.author | Yan, Baoqiang | |
dc.contributor.author | O’Regan, Donal | |
dc.contributor.author | Agarwal, Ravi P. | |
dc.date.accessioned | 2018-09-20T16:28:45Z | |
dc.date.available | 2018-09-20T16:28:45Z | |
dc.date.issued | 2018-03-01 | |
dc.identifier.citation | Yan, Baoqiang; O’Regan, Donal; Agarwal, Ravi P. (2018). The existence of positive solutions for kirchhoff-type problems via the sub-supersolution method. Analele Universitatii "Ovidius" Constanta - Seria Matematica 26 (1), 5-41 | |
dc.identifier.issn | 1844-0835 | |
dc.identifier.uri | http://hdl.handle.net/10379/14479 | |
dc.description.abstract | In this paper we discuss the existence of a solution between well ordered subsolution and supersolution of the Kirchhoff equation. Using the sub-supersolution method together with a Rabinowitz-type global bifurcation theory, we establish the existence of positive solutions for Kirchhoff-type problems when the nonlinearity is singular or sign-changing. Moreover, we obtain some necessary and sufficient conditions for the existence of positive solutions for the problem when N = 1. | |
dc.publisher | Walter de Gruyter GmbH | |
dc.relation.ispartof | Analele Universitatii "Ovidius" Constanta - Seria Matematica | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Ireland | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/ie/ | |
dc.subject | kirchhoff-type elliptic problems | |
dc.subject | rabinowitz-type global bifurcation theory | |
dc.subject | sub-supersolution method | |
dc.subject | existence | |
dc.subject | uniqueness | |
dc.subject | boundary-value problem | |
dc.subject | asymptotic-behavior | |
dc.subject | equation | |
dc.subject | singularity | |
dc.subject | diffusion | |
dc.subject | r-3 | |
dc.title | The existence of positive solutions for kirchhoff-type problems via the sub-supersolution method | |
dc.type | Article | |
dc.identifier.doi | 10.2478/auom-2018-0001 | |
dc.local.publishedsource | https://content.sciendo.com/downloadpdf/journals/auom/26/1/article-p5.pdf | |
nui.item.downloads | 0 | |