Show simple item record

dc.contributor.authorRautenberger, Ralf
dc.contributor.authorFernández, Pamela A.
dc.contributor.authorStrittmatter, Martina
dc.contributor.authorHeesch, Svenja
dc.contributor.authorCornwall, Christopher E.
dc.contributor.authorHurd, Catriona L.
dc.contributor.authorRoleda, Michael Y.
dc.date.accessioned2018-09-20T16:22:30Z
dc.date.available2018-09-20T16:22:30Z
dc.date.issued2015-01-25
dc.identifier.citationRautenberger, Ralf; Fernández, Pamela A. Strittmatter, Martina; Heesch, Svenja; Cornwall, Christopher E.; Hurd, Catriona L.; Roleda, Michael Y. (2015). Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth inulva rigida(chlorophyta). Ecology and Evolution 5 (4), 874-888
dc.identifier.issn2045-7758
dc.identifier.urihttp://hdl.handle.net/10379/13602
dc.description.abstractCarbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CA(ext)-mediated HCO3- dehydration and alter the stable carbon isotope (C-13) signatures toward more CO2 use to support higher growth rate. At pH(T) 9.0 where CO2(aq) is <1mol L-1, inhibition of the known HCO3- use mechanisms, that is, direct HCO3- uptake through the AE port and CA(ext)-mediated HCO3- dehydration decreased net photosynthesis (NPS) by only 56-83%, leaving the carbon uptake mechanism for the remaining 17-44% of the NPS unaccounted. An in silico search for carbon-concentrating mechanism elements in expressed sequence tag libraries of Ulva found putative light-dependent HCO3- transporters to which the remaining NPS can be attributed. The shift in C-13 signatures from -22 parts per thousand toward -10 parts per thousand under saturating light but not under elevated CO2(aq) suggest preference and substantial HCO3- use to support photosynthesis and growth. U.rigida is Ci saturated, and growth was primarily controlled by light. Therefore, increased levels of CO2(aq) predicted for the future will not, in isolation, stimulate Ulva blooms.
dc.publisherWiley-Blackwell
dc.relation.ispartofEcology and Evolution
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectbicarbonate
dc.subjectc:n ratio
dc.subjectcarbon physiology
dc.subjectcarbon-concentrating mechanism
dc.subjectcarbonic anhydrase
dc.subjectchlorophyll fluorescence
dc.subjectf-v/f-m
dc.subjectpigments
dc.subjectseaweed
dc.subjectstable carbon isotope
dc.subjectmacrocystis-pyrifera laminariales
dc.subjectartificial seawater medium
dc.subjectanion-exchange protein
dc.subjectgreen tide alga
dc.subjectinorganic-carbon
dc.subjectmarine macroalgae
dc.subjectbicarbonate uptake
dc.subjectchlamydomonas-reinhardtii
dc.subjectemiliania-huxleyi
dc.subjecthco3-utilization
dc.titleSaturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth inulva rigida(chlorophyta)
dc.typeArticle
dc.identifier.doi10.1002/ece3.1382
dc.local.publishedsourcehttp://onlinelibrary.wiley.com/doi/10.1002/ece3.1382/pdf
nui.item.downloads0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland