• Login
    ARAN - Access to Research at NUI Galway
    View Item 
    •   ARAN Home
    • Support Services
    • Externally hosted open access publications with NUI Galway authors (2)
    • View Item
    •   ARAN Home
    • Support Services
    • Externally hosted open access publications with NUI Galway authors (2)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ARANCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Help

    How to submit and FAQs

    Comparative evaluation of biochemical changes in tomato (lycopersicon esculentum mill.) infected by alternaria alternata and its toxic metabolites (tea, aoh, and ame)

    Thumbnail
    View/Open
    Full Text
    Date
    2016-09-22
    Author
    Meena, Mukesh
    Zehra, Andleeb
    Dubey, Manish K.
    Aamir, Mohd
    Gupta, Vijai K.
    Upadhyay, Ram S.
    Metadata
    Show full item record
    Usage
    This item's downloads: 0 (view details)
    Cited 46 times in Scopus (view citations)
    
    Recommended Citation
    Meena, Mukesh; Zehra, Andleeb; Dubey, Manish K. Aamir, Mohd; Gupta, Vijai K.; Upadhyay, Ram S. (2016). Comparative evaluation of biochemical changes in tomato (lycopersicon esculentum mill.) infected by alternaria alternata and its toxic metabolites (tea, aoh, and ame). Frontiers in Plant Science 7 ,
    Published Version
    http://journal.frontiersin.org/article/10.3389/fpls.2016.01408/pdf
    Abstract
    In the present study, we have evaluated the comparative biochemical defense response generated against Alternaria alternate and its purified toxins viz. alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA). The necrotic lesions developed due to treatment with toxins were almost similar as those produced by the pathogen, indicating the crucial role of these toxins in plant pathogenesis. An oxidative burst reaction characterized by the rapid and transient production of a large amount of reactive oxygen species (ROS) occurs following the pathogen infection/toxin exposure. The maximum concentration of hydrogen peroxide (H2O2) produced was reported in the pathogen infected samples (22.2-fold) at 24 h post inoculation followed by TeA (18.2-fold), AOH (15.9-fold), and AME (14.1-fold) in treated tissues. 3,3'-Diaminobenzidine staining predicted the possible sites of H2O2 accumulation while the extent of cell death was measured by Evans blue dye. The extent of lipid peroxidation and malondialdehyde (MDA) content was higher (15.8-fold) at 48 h in the sample of inoculated leaves of the pathogen when compared to control. The cellular damages were observed as increased MDA content and reduced chlorophyll. The activities of antioxidative defense enzymes increased in both the pathogen infected as well as toxin treated samples. Superoxide dismutase (SOD) activity was 5.9-fold higher at 24 h post inoculation in leaves followed by TeA (5.0-fold), AOH (4.1-fold) and AME (2.3-fold) treated leaves than control. Catalase (CAT) activity was found to be increased upto 48 h post inoculation and maximum in the pathogen challenged samples followed by other toxins. The native PAGE results showed the variations in the intensities of isozyme (SOD and CAT) bands in the pathogen infected and toxin treated samples. Ascorbate peroxidase (APx) and glutathione reductase (GR) activities followed the similar trend to scavenge the excess H2O2. The reduction in CAT activities after 48 h post inoculation demonstrate that the biochemical defense programming shown by the host against the pathogen is not well efficient resulting in the compatible host pathogen interaction. The elicitor (toxins) induced biochemical changes depends on the potential toxic
    URI
    http://hdl.handle.net/10379/12866
    Collections
    • Externally hosted open access publications with NUI Galway authors (2)
    • Copyright @ NUI Galway
    • Library
    • NUI Galway